
Introduction to Computer Science

By:
Huong Nguyen

Introduction to Computer Science

By:
Huong Nguyen

Online:
< http://cnx.org/content/col10776/1.1/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Huong Nguyen. It is licensed under the

Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: July 29, 2009

PDF generated: October 27, 2012

For copyright and attribution information for the modules contained in this collection, see p. 157.

Table of Contents

1 Introduction to Computer Science

1.1 Basic concepts . 1
1.2 Data Representation in a Computer . 5
1.3 Computer Systems . 20
1.4 Operating Systems . 38
1.5 Computer Networks . 61

2 The C programming languages

2.1 Introduction to C . 65
2.2 Data Types and Expressions . 76
2.3 The Control Flow . 89
2.4 Pointers and Arrays . 100
2.5 Functions . 116
2.6 Strings . 124
2.7 Structures . 128
2.8 Files . 136

Index . 156
Attributions .157

iv

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

Chapter 1

Introduction to Computer Science

1.1 Basic concepts1

1.1.1 Information & Information Processing

1.1.1.1 Data � Information � Knowledge

The content of the human mind can be classi�ed into four categories:

• Data: symbols;
• Information: data that are processed to be useful; provides answers to "who", "what", "where", and

"when" questions;
• Knowledge: understanding of data and information; answers "how" questions;
• Wisdom: evaluated understanding.

Data
Data consist of raw facts and �gures - it does not have any meaning until it is processed and turned into

something useful.
Data comes in many forms; the main ones are letters, numbers and symbols.
Data is a prerequisite to information. For example, the two data items below could represent some very

important information:

DATA INFORMATION

123424331911 Your winning Lottery ticket number

211192 Your Birthday

An organization sometimes has to decide on the nature and volume of data that is required for creating the
necessary information.

Information
Information is the data that has been processed in such a way as to be meaningful to the person who

receives it.

INFORMATION = DATA + CONTEXT + MEANING

Example
Consider the number19051890. It has no meaning or context. It is an instance of data.
If a context is given : it is a date (Vietnamese use French format ddmmyyyy). This allows us to register

it as 19th May 1890. It still has no meaning and is therefore not information
Meaning : The birth date of Vietnamese President Ho Chi Minh.

1This content is available online at <http://cnx.org/content/m27715/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

1

2 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

This gives us all the elements required for it to be called 'information'
Knowledge
By knowledge we mean the human understanding of a subject matter that has been acquired through

proper study and experience.
Knowledge is usually based on learning, thinking, and proper understanding of the problem area. It

can be considered as the integration of human perceptive processes that helps them to draw meaningful
conclusions.

Consider this scenario: A person puts his �nger into very hot water.
Data gathered: The �nger nerve sends pain data to the brain.
Processing: The brain considers the data and comes up with...
Information: The painful �nger means it is not in a good place.
Action: The brain tells �nger to remove itself from hot water.
Knowledge: Sticking the �nger in hot water is a bad idea.
Knowledge is having an understanding of the "rules".
The terms Data, Information, Knowledge, and Wisdom are sometimes presented in a form that suggests

a scale.

Figure 1.1: Data, Information, knowledge, wisdom along a scale

1.1.1.2 Information Processing

Information processing is the change (processing) of information in any manner detectable by an observer.
Information processing may more speci�cally be de�ned in terms by Claude E. Shannon as the conversion of
latent information into manifest.Input, process, output is a typical model for information processing. Each
stage possibly requires data storage.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

3

Figure 1.2: Model of information processing

Now that computer systems have become so powerful, some have been designed to make use of information
in a knowledgeable way. The following de�nition is of information processing

The electronic capture, collection, storage, manipulation, transmission, retrieval, and presentation of
information in the form of data, text, voice, or image and includes telecommunications and o�ce automation
functions.

History and Classi�cation of Computers

1.1.1.3 History of Computers

Webster's Dictionary de�nes "computer" as any programmable electronic device that can store, retrieve, and
process data.

Blaise Pascal invents the �rst commercial calculator, a hand powered adding machine
In 1946, ENIAC, based on John Von Neuman model completes.The �rst commercially successful computer

is IBM 701.
A generation refers to the state of improvement in the development of a product. This term is also

used in the di�erent advancements of computer technology. With each generation, the circuitry has gotten
smaller and more advanced than the previous generations before it. As a result of the miniaturization, the
speed, power and memory of computers has proportionally increased. New discoveries are constantly being
developed that a�ect the way we live, work and play. In terms of technological developments over time,
computers have been broadly classed into �ve generations.

1.1.1.3.1 The First Generation - 1940-1956

The �rst computers used vacuum tubes for circuitry and magnetic drums for memory, and were often
enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great
deal of electricity, they generated a lot of heat, which was often the cause of malfunctions. First generation
computers relied on machine language to perform operations, and they could only solve one problem at a
time. Input was based on punched cards and paper tape, and output was displayed on printouts.

The computers UNIVAC , ENIAC of the US and BESEM of the former Soviet Union are examples of
�rst-generation computing devices.

1.1.1.3.2 The Second Generation - 1956-1963

Transistors replaced vacuum tubes and ushered in the second generation of computers. Computers becomed
smaller, faster, cheaper, more energy-e�cient and more reliable than their �rst-generation predecessors.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

4 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Second-generation computers still relied on punched cards for input and printouts for output. High-level
programming languages were being developed, such as early versions of COBOL and FORTRAN.

The �rst computers of this generation were developed for the atomic energy industry.
The computers IBM-1070 of the US and MINSK of the former Soviet Union belonged to the second

generation.

1.1.1.3.3 The Third Generation - 1964-1971: Integrated Circuits

The development of the integrated circuit was the hallmark of the third generation of computers. Transistors
were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed
and e�ciency of computers. Users interacted with third generation computers through keyboards and
monitors and interfaced with an operating system, which allowed the device to run many di�erent applications
at one time. Typical computers of the third generation are IBM 360 (United States) and EC (former Soviet
Union).

1.1.1.3.4 The Fourth Generation - 1971-Present: Microprocessors

The microprocessor brought the fourth generation of computers, as thousands of integrated circuits were
built onto a single silicon chip. What in the �rst generation �lled an entire room could now �t in the palm
of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer - from the
central processing unit and memory to input/output controls - on a single chip.

In 1981 IBM introduced its �rst computer for the home user, and in 1984 Apple introduced the Macintosh.
Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and
more everyday products began to use microprocessors.

As these small computers became more powerful, they could be linked together to form networks, which
eventually led to the development of the Internet. Fourth generation computers also saw the development
of GUI (Graphic User Interface), the mouse and handheld devices.

1.1.1.3.5 The Fifth Generation - Present and Beyond: Arti�cial Intelligence

Fifth generation computing devices, based on arti�cial intelligence, are still in development, though there are
some applications, such as voice recognition, that are being used today. The use of parallel processing and
superconductors is helping to make arti�cial intelligence a reality. Quantum computation and molecular and
nanotechnology will radically change the face of computers in years to come. The goal of �fth-generation
computing is to develop devices that respond to natural language input and are capable of learning and
self-organization.

1.1.1.4 Classi�cation of Computers

Computers are available in di�erent shapes, sizes and weights, due to these di�erent shapes and sizes they
perform di�erent sorts of jobs from one another.

• Mainframe and Super Computers

The biggest in size, the most expensive in price than any other is classi�ed and known as super computer.
It can process trillions of instructions in seconds. Governments specially use this type of computer for their
di�erent calculations and heavy jobs. This kind of computer is also helpful for forecasting weather reports
worldwide.

Another giant in computers after the super computer is Mainframe, which can also process millions
of instruction per second and capable of accessing billions of data. This computer is commonly used in
big hospitals, airline reservations companies, and many other huge companies prefer mainframe because of
its capability of retrieving data on a huge basis. This is normally too expensive and out of reach from a
salary-based person who wants a computer for his home.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

5

• Minicomputers

This computer o�ers less than mainframe in work and performance. These are the computers, which are
mostly preferred by the small type of business personals, colleges, and so on.

• Microcomputers

These computers are lesser in cost than the computers given above and also, small in size; They can store
a big amount of data and have a memory to meet the assignments of students and other necessary tasks of
business people. There are many types of microcomputers: desktop, workstation, laptop, PDA , etc.

1.1.1.5 Computer Science and Relevant Sciences

In 1957 the German computer scientist Karl Steinbuch coined the word informatik by publishing a pa-
per called Informatik: Automatische Informationsverarbeitung (i.e. "Informatics: automatic information
processing"). The French term informatique was coined in 1962 by Philippe Dreyfus together with vari-
ous translations�informatics (English), informatica (Italian, Spanish, Portuguese), informatika (Russian)
referring to the application of computers to store and process information.

The term was coined as a combination of "information" and "automation", to describe the science of
automatic information processing.

Informatics is more oriented towards mathematics than computer science.

1.1.1.5.1 Computer Science

Computer Science is the study of computers, including both hardware and software design. Computer science
is composed of many broad disciplines, for instance, arti�cial intelligence and software engineering.

1.1.1.5.2 Information Technology

Includes all matters concerned with the furtherance of computer science and technology and with the design,
development, installation, and implementation of information systems and applications

1.1.1.5.3 Information and Communication Technology

ICT (information and communications technology - or technologies) is an umbrella term that includes any
communication device or application, encompassing: radio, television, cellular phones, computer and network
hardware and software, satellite systems and so on, as well as the various services and applications associated
with them, such as videoconferencing and distance learning.

1.2 Data Representation in a Computer2

Computer must not only be able to carry out computations, they must be able to do them quickly and
e�ciently. There are several data representations, typically for integers, real numbers, characters, and
logical values.

1.2.1 Number Representation in Various Numeral Systems

A numeral system is a collection of symbols used to represent small numbers, together with a system of rules
for representing larger numbers. Each numeral system uses a set of digits. The number of various unique
digits, including zero, that a numeral system uses to represent numbers is called base or radix.

2This content is available online at <http://cnx.org/content/m27737/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

6 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.2.1.1 Base - b numeral system

b basic symbols (or digits) corresponding to natural numbers between 0 and b − 1 are used in the represen-
tation of numbers.

To generate the rest of the numerals, the position of the symbol in the �gure is used. The symbol in the
last position has its own value, and as it moves to the left its value is multiplied by b.

We write a number in the numeral system of base b by expressing it in the form

N(b) = anan−1an−2...a1a0a−1a−2...a−m (1.1)

N(b), with n+1 digit for integer and m digits for fractional part, represents the sum:

Figure 1.3

in the decimal system. Note that ai is the ith digit from the position of a0

Decimal, Binary, Octal and Hexadecimal are common used numeral system. The decimal system has ten
as its base. It is the most widely used numeral system, because humans have four �ngers and a thumb on
each hand, giving total of ten digit over both hand.

Switches, mimicked by their electronic successors built of vacuum tubes, have only two possible states:
"open" and "closed". Substituting open=1 and closed=0 yields the entire set of binary digits. Modern
computers use transistors that represent two states with either high or low voltages. Binary digits are
arranged in groups to aid in processing, and to make the binary numbers shorter and more manageable for
humans.Thus base 16 (hexadecimal) is commonly used as shorthand. Base 8 (octal) has also been used for
this purpose.

Decimal System
Decimal notation is the writing of numbers in the base-ten numeral system, which uses various symbols

(called digits) for no more than ten distinct values (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) to represent any number,
no matter how large. These digits are often used with a decimal separator which indicates the start of a
fractional part, and with one of the sign symbols + (positive) or − (negative) in front of the numerals to
indicate sign.

Decimal system is a place-value system. This means that the place or location where you put a numeral
determines its corresponding numerical value. A two in the one's place means two times one or two. A two
in the one-thousand's place means two times one thousand or two thousand.

The place values increase from right to left. The �rst place just before the decimal point is the one's
place, the second place or next place to the left is the ten's place, the third place is the hundred's place, and
so on.

The place-value of the place immediately to the left of the "decimal" point is one in all place-value number
systems. The place-value of any place to the left of the one's place is a whole number computed from a
product (multiplication) in which the base of the number system is repeated as a factor one less number of
times than the position of the place.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

7

For example, 5246 can be expressed like in the following expressions

5246 =5× 103 + 2× 102 + 4× 101+6× 100

= 5× 1000 + 2× 100 + 4× 10 + 6× 1
(1.2)

The place-value of any place to the right of the decimal point is a fraction computed from a product in which
the reciprocal of the base�or a fraction with one in the numerator and the base in the denominator�is
repeated as a factor exactly as many times as the place is to the right of the decimal point.

For example

254.68 = 2× 102 + 5× 101 + 4× 100 + 6× 10−1 + 8× 10−2

= 200 + 50 + 4 + 6
10 + 8

100

(1.3)

1.2.1.2 Binary System

The binary number system is base 2 and therefore requires only two digits, 0 and 1. The binary system is
useful for computer programmers, because it can be used to represent the digital on/o� method in which
computer chips and memory work.

A binary number can be represented by any sequence of bits (binary digits), which in turn may be
represented by any mechanism capable of being in two mutually exclusive states.

Counting in binary is similar to counting in any other number system. Beginning with a single digit,
counting proceeds through each symbol, in increasing order. Decimal counting uses the symbols 0 through
9, while binary only uses the symbols 0 and 1.

When the symbols for the �rst digit are exhausted, the next-higher digit (to the left) is incremented, and
counting starts over at 0A single bit can represent one of two values, 0 or 1.Binary numbers are convertible
to decimal numbers.

Here's an example of a binary number, 11101.11(2) , and its representation in the decimal notation

Figure 1.4

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

8 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

235.64(8) = 2× 82 + 3× 81 + 5× 80 + 6× 8−1 + 4× 8−2 = 157.8125(10) (1.4)

1.2.1.3 Hexadecimal System

The hexadecimal system is base 16. Therefore, it requires 16 digits. The digits 0 through 9 are used, along
with the letters A through F, which represent the decimal values 10 through 15. Here is an example of a
hexadecimal number and its decimal equivalent:

34F5C(16) = 3× 164 + 4× 163 + 15× 162 + 5× 161 + 12× 160 = 216294(10) (1.5)

The hexadecimal system (often called the hex system) is useful in computer work because it is based on
powers of 2. Each digit in the hex system is equivalent to a four-digit binary number. Table below shows
some hex/decimal/binary equivalents.

Hexadecimal Digit Decimal Equivalent Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

10 16 10000

F0 240 11110000

FF 255 11111111

Table 1.1

1.2.1.4 Octal System

Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power
of two (namely, 23, so it takes exactly three binary digits to represent an octal digit). The correspondence

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

9

between octal and binary numerals is the same as for the �rst eight digits of hexadecimal in the table above.
Binary 000 is equivalent to the octal digit 0, binary 111 is equivalent to octal 7, and so forth.

Converting from octal to binary proceeds in the same fashion as it does for hexadecimal:

65(8) = 110 1012 (1.6)

17(8) = 001 1112 (1.7)

And from octal to decimal:

235.64(8) = 2× 82 + 3× 81 + 5× 80 + 6× 8−1 + 4× 8−2 = 157.8125(10) (1.8)

1.2.1.5 Converting from decimal to base�b

To convert a decimal fraction to another base, say base b, you split it into an integer and a fractional part.
Then divide the integer by b repeatedly to get each digit as a remainder. Namely, with value of integer part
= dn−1dn−2...d2d1d0(10) , �rst divide value by b the remainder is the least signi�cant digit a0 . Divide the
result by b, the remainder is a1 .Continue this process until the result is zero, giving the most signi�cant
digit, an−1 . Let's convert 43868(10) to hexadecimal:

Figure 1.5: Converting from decimal to hexadecimal

After that, multiply the fractional part by b repeatedly to get each digit as an integer part. We will
continue this process until we get a zero as our fractional part or until we recognize an in�nite repeating
pattern.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

10 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Now convert 0.625 to hexadecimal :
.
0.39625 * 16 = 0.625 ������������-> 0
.625* 16 = 10 ���������> A.
We get fractional part is zero.
In summary, the result of conversion 43868.39625(10) to hexadecimal is AB5C.0A

1.2.2 Data Representation in a Computer. Units of Information

1.2.2.1 Basic Principles

Data Representation refers to the methods used internally to represent information stored in a computer.
Computers store lots of di�erent types of information:

• numbers
• text
• graphics of many varieties (stills, video, animation)
• sound

At least, these all seem di�erent to us. However, all types of information stored in a computer are stored
internally in the same simple format: a sequence of 0's and 1's. How can a sequence of 0's and 1's represent
things as diverse as your photograph, your favorite song, a recent movie, and your term paper?

• Numbers must be expressed in binary form following some speci�c standard.
• Character data are assigned a sequence of binary digits
• Other types of data, such as sounds, videos or other physical signals are converted to digital following

the schema below

Digital signal
Continuous signalPhysical signalComputerConvert ADSensor

Figure 1.6: Process of converting from physical signal to digital signal

Depending on the nature of its internal representation, data items are divided into:

• Basic types (simple types or type primitives) : the standard scalar prede�ned types that one would
expect to �nd ready for immediate use in any programming language

• Structured types(Higher level types) are then made up from such basic types or other existing higher
level types.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

11

1.2.2.2 Units of Information

The most basic unit of information in a digital computer is called a BIT, which is a contraction of Binary
Digit. In the concrete sense, a bit is nothing more than a state of "on" or "o�" (or "high" and "low")
within a computer circuit. In 1964, the designers of the IBM System/360 mainframe computer established
a convention of using groups of 8 bits as the basic unit of addressable computer storage. They called this
collection of 8 bits a byte.

Computer words consist of two or more adjacent bytes that are sometimes addressed and almost always
are manipulated collectively. The word size represents the data size that is handled most e�ciently by a
particular architecture. Words can be 16 bits, 32 bits, 64 bits, or any other size that makes sense within the
context of a computer's organization.

Some other units of information are described in the following table :

Figure 1.7

Representation of Integers
An integer is a number with no fractional part; it can be positive, negative or zero. In ordinary usage, one

uses a minus sign to designate a negative integer. However, a computer can only store information in bits,
which can only have the values zero or one. We might expect, therefore, that the storage of negative integers
in a computer might require some special technique - allocating one sign bit (often the most signi�cant bit)
to represent the sign: set that bit to 0 for a positive number, and set to 1 for a negative number.

1.2.2.3 Unsigned Integers

Unsigned integers are represented by a �xed number of bits (typically 8, 16, 32, and/or 64)

• With 8 bits, 0. . .255 (0016. . .FF16) can be represented;
• With 16 bits, 0. . .65535 (000016. . .FFFF16) can be represented;
• In general, an unsigned integer containing n bits can have a value between 0 and 2n − 1

If an operation on bytes has a result outside this range, it will cause an `over�ow'

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

12 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.2.2.4 Signed Integers

The binary representation discussed above is a standard code for storing unsigned integer numbers. However,
most computer applications use signed integers as well; i.e. the integers that may be either positive or
negative.

In binary we can use one bit within a representation (usually the most signi�cant or leading bit) to
indicate either positive (0) or negative (1), and store the unsigned binary representation of the magnitude
in the remaining bits.

However, for reasons of ease of design of circuits to do arithmetic on signed binary numbers (e.g. addition
and subtraction), a more common representation scheme is used called two's complement. In this scheme,
positive numbers are represented in binary, the same as for unsigned numbers. On the other hand, a negative
number is represented by taking the binary representation of the magnitude:

• Complement the bits : Replace all the 1's with 0's, and all the 0's with 1's;
• Add one to the complemented number.

Example

+4210 = 001010102

and so

-4210 = 110101102

• Binary number with leading 0 is positive
• Binary number with leading 1 is negative

Example
Performing two's complement on the decimal 42 to get -42
Using a eight-bit representation

42= 00101010 Convert to binary

11010101 Complement the bits

11010101 Add 1 to the complement

+ 00000001

11010110 Result is -42 in two's complement

1.2.3 Arithmetic Operations on Integers

1.2.3.1 Addition and Subtraction of integers

Addition and subtraction of unsigned binary numbers
Binary Addition is much like normal everyday (decimal) addition, except that it carries on a value 2

instead of value 10.
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0, and carry 1 to the next more signi�cant bit
Example

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

13

00011010 + 00001100 = 00100110

1 1 carries

0 0 0 1 1 0 1 0 = 26(base 10)

+ 0 0 0 0 1 1 0 0 = 12(base 10)

0 0 1 0 0 1 1 0 = 38(base 10)

11010001 + 00111110 = 100011010

1 1 1 carries

1 1 0 1 0 0 0 1 = 208 (base 10)

+ 0 1 0 0 1 0 0 1 = 73 (base 10)

1 0 0 0 1 1 0 1 0 = 281 (base 10)

The result exceeds the magnitude which can be represented with 8 bits. This is an over�ow.
Subtraction is executed by using two's complement
Addition and subtraction of signed binary numbers

1.2.3.2 Multiplication and Division of Integers

Binary Multiplication
Multiplication in the binary system works the same way as in the decimal system:
0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1, and no carry or borrow bits
Example

00101001 × 00000110 = 11110110

0 0 1 0 1 0 0 1 = 41(base 10)

× 0 0 0 0 0 1 1 0 = 6(base 10)

0 0 0 0 0 0 0

0 1 0 1 0 0 1

0 1 0 1 0 0 1

0 0 1 1 1 1 0 1 1 0 = 246(base 10)

00010111 × 00000011 = 01000101

0 0 0 1 0 1 1 1 = 23(base 10)

× 0 0 0 0 0 0 1 1 = 3(base 10)

1 1 1 1 1 carries

0 0 1 0 1 1 1

0 0 1 0 1 1 1

0 0 1 0 0 0 1 0 1 = 69(base 10)

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

14 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Binary division follow the same rules as in decimal division.

Figure 1.8

1.2.4 Logical operations on Binary Numbers

Logical Operation with one or two bits
NOT : Changes the value of a single bit. If it is a "1", the result is "0"; if it is a "0", the result is "1".
AND: Compares 2 bits and if they are both "1", then the result is "1", otherwise, the result is "0".
OR : Compares 2 bits and if either or both bits are "1", then the result is "1", otherwise, the result is

"0".
XOR : Compares 2 bits and if exactly one of them is "1" (i.e., if they are di�erent values), then the result

is "1"; otherwise (if the bits are the same), the result is "0".
Logical operators between two bits have the following truth table

x y x AND y x OR y x XOR y

1 1 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

Table 1.2

Logical Operation with one or two binary numbers
A logical (bitwise) operation operates on one or two bit patterns or binary numerals at the level of their

individual bits.
Example

NOT 0111

= 1000

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

15

AND operation
An AND operation takes two binary representations of equal length and performs the logical AND

operation on each pair of corresponding bits. In each pair, the result is 1 if the �rst bit is 1 AND the second
bit is 1. Otherwise, the result is 0.

Example

0101

AND 0011

= 0001

OR operation
An OR operation takes two bit patterns of equal length, and produces another one of the same length by

matching up corresponding bits (the �rst of each; the second of each; and so on) and performing the logical
OR operation on each pair of corresponding bits.

Example

0101

OR 0011

= 0111

XOR Operation
An exclusive or operation takes two bit patterns of equal length and performs the logical XOR operation

on each pair of corresponding bits.
Example

0101

XOR 0011

= 0110

1.2.5 Symbol Representation

1.2.5.1 Basic Principles

It is important to handle character data. Character data is not just alphabetic characters, but also numeric
characters, punctuation, spaces, etc. They need to be represented in binary.

There aren't mathematical properties for character data, so assigning binary codes for characters is
somewhat arbitrary.

ASCII Code Table
ASCII stands for American Standard Code for Information Interchange. The ASCII standard was devel-

oped in 1963, permitted machines from di�erent manufacturers to exchange data.
ASCII code table consists of 128 binary values (0 to 127), each associated with a character or command.

The non-printing characters are used to control peripherals such as printer.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

16 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.9: ASCII coding table

The extended ASCII character set also consists 128 128 characters representing additional special, math-
ematical, graphic and foreign characters.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

17

Figure 1.10: The extended ASCII characters

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

18 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.2.5.2 Unicode Code Table

There are some problems with the ASCII code table. With ASCII character set, string datatypes allocated
one byte per character. But logographic languages such as Chinese, Japanese, and Korean need far more
than 256 characters for reasonable representation. Even Vietnamese, a language uses almost Latin letters,
need 61 characters for representation. Where can we �nd numbers for our characters? is it a solution : 2
bytes per character?

Hundreds of di�erent encoding systems were invented. But these encoding systems con�ict with one
another : two encodings can use the same number for two di�erent characters, or use di�erent numbers for
the same character.

The Unicode standard was �rst published in 1991. With two bytes for each character, it can represent
216-1 di�erent characters.

The Unicode standard has been adopted by such industry leaders as HP, IBM, Microsoft, Oracle, Sun,
and many others. It is supported in many operating systems, all modern browsers, and many other products.

The obvious advantages of using Unicode are :

• To o�er signi�cant cost savings over the use of legacy character sets.
• To enable a single software product or a single website to be targeted across multiple platforms,

languages and countries without re-engineering.
• To allow data to be transported through many di�erent systems without corruption.

1.2.6 Representation of Real Numbers

1.2.6.1 Basic Principles

No human system of numeration can give a unique representation to real numbers. If you give the �rst few
decimal places of a real number, you are giving an approximation to it.

Mathematicians may think of one approach : a real number x can be approximated by any number in
the range from x - epsilon to x + epsilon. It is �xed-point representation. Fixed-point representations are
unsatisfactory for most applications involving real numbers.

Scientists or engineers will probably use scienti�c notation: a number is expressed as the product of a
mantissa and some power of ten.

A system of numeration for real numbers will typically store the same three data � a sign, a mantissa,
and an exponent � into an allocated region of storage

The analogues of scienti�c notation in computer are described as �oating-point representations.
In the decimal system, the decimal point indicates the start of negative powers of 10.

12.34 = 1 ∗ 101 + 2 ∗ 100 + 3 ∗ 10−1 + 4 ∗ 10−2 (1.9)

If we are using a system in base k (ie the radix is k), the `radix point' serves the same function:

101.1012 = 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 + 1 ∗ 2−1 + 0 ∗ 2−2 + 1 ∗ 22

= 4(10) + 1(10) + 0.5(10) + 0.125(10)

= 5.625(10)

(1.10)

A �oating point representation allows a large range of numbers to be represented in a relatively small
number of digits by separating the digits used for precision from the digits used for range.

To avoid multiple representations of the same number �oating point numbers are usually normalized so
that there is only one nonzero digit to the left of the `radix' point, called the leading digit.

A normalized (non-zero) �oating-point number will be represented using

(−1)s
d0 · d1d2...dp−1 × be (1.11)

where

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

19

• s is the sign,
• d0 · d1d2...dp−1 - termed the signi�cand - has p signi�cant digits, each digit satis�es 0≤ di <b
• e, emin ≤ e ≤ emax , is the exponent
• b is the base (or radix)

Example
If k = 10 (base 10) and p = 3, the number 0·1 is represented as 0.100
If k = 2 (base 2) and p = 24, the decimal number 0·1 cannot be represented exactly but is approximately

1 · 10011001100110011001101× 2−4

Formally,
(−1)s

d0 · d1d2...dp−1 be represents the value (−1)s (
d0 + d1b

−1 + d2b
−2...d−1b

(p−1)
)
be

In brief, a normalized representation of a real number consist of

• The range of the number : the number of digits in the exponent (i.e. by emax) and the base b to which
it is raised

• The precision : the number of digits p in the signi�cand and its base b

1.2.6.2 IEEE 754/85 Standard

There are many ways to represent �oating point numbers. In order to improve portability most computers
use the IEEE 754 �oating point standard.

There are two primary formats:

• 32 bit single precision.
• 64 bit double precision.

Single precision consists of:

• A single sign bit, 0 for positive and 1 for negative;
• An 8 bit base-2 (b = 2) excess-127 exponent, with emin = �126 (stored as 127(10) − 126(10) = 1 =

00000001(2)) and emax = 127 (stored as 127(10) + 127(10) = 254(10) = 11111110(2)).
• a 23 bit base-2 (k=2) signi�cand, with a hidden bit giving a precision of 24 bits (i.e. 1.d1d2...d23)

Figure 1.11: Single precision memory format

Notes

• Single precision has 24 bits precision, equivalent to about 7.2 decimal digits.
• The largest representable non-in�nite number is almost 2× 2127 ∼= 3.402823× 1038

• The smallest representable non-zero normalized number is 1× 2−127 ∼= 1.17549× 10−38

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

20 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

• Denormalized numbers (eg 0.01× 2−126) can be represented.
• There are two zeros, ± 0.
• There are two in�nities, ±∞ .
• A NaN (not a number) is used for results from unde�ned operations

Double precision �oating point standard requires a 64 bit word

• The �rst bit is the sign bit
• The next eleven bits are the exponent bits
• The �nal 52 bits are the fraction

Range of double numbers : [±2.225×10−308÷±1.7977×10308]

Figure 1.12: Double precision memory format

1.3 Computer Systems3

A computer is an electronic device that performs calculations on data, presenting the results to humans
or other computers in a variety of (hopefully useful) ways. The computer system includes not only the
hardware, but also software that are necessary to make the computer function.

Computer hardware is the physical part of a computer, including the digital circuitry, as distinguished
from the computer software that executes within the hardware.

Computer software is a general term used to describe a collection of computer programs, procedures and
documentation that perform some task on a computer system

1.3.1 Computer Organization

1.3.1.1 General Model of a Computer

A computer performs basically �ve major operations or functions irrespective of their size and make.
1. Input: This is the process of entering data and programs in to the computer system. You should

know that computer is an electronic machine like any other machine which takes as inputs raw data and
performs some processing giving out processed data. Therefore, the input unit takes data from us to the
computer in an organized manner for processing.

2. Storage: The process of saving data and instructions permanently is known as storage. Data has
to be fed into the system before the actual processing starts. It is because the processing speed of Central
Processing Unit (CPU) is so fast that the data has to be provided to CPU with the same speed. Therefore

3This content is available online at <http://cnx.org/content/m27733/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

21

the data is �rst stored in the storage unit for faster access and processing. This storage unit or the primary
storage of the computer system is designed to do the above functionality. It provides space for storing data
and instructions.

The storage unit performs the following major functions:
- All data and instructions are stored here before and after processing.
- Intermediate results of processing are also stored here.
3. Processing: The task of performing operations like arithmetic and logical operations is called

processing. The Central Processing Unit (CPU) takes data and instructions from the storage unit and
makes all sorts of calculations based on the instructions given and the type of data provided. It is then sent
back to the storage unit.

4. Output: This is the process of producing results from the data for getting useful information.
Similarly the output produced by the computer after processing must also be kept somewhere inside the
computer before being given to you in human readable form. Again the output is also stored inside the
computer for further processing.

5. Control: The manner how instructions are executed and the above operations are performed.
Controlling of all operations like input, processing and output are performed by control unit. It takes
care of step by step processing of all operations in side the computer.

In order to carry out the operations mentioned above, the computer allocates the task between its various
functional units. The computer system is divided into several units for its operation.

• CPU (central processing unit) : The place where decisions are made, computations are performed, and
input/output requests are delegated

• Memory: stores information being processed by the CPU
• Input devices : allows people to supply information to computers
• Output devices : allows people to receive information from computers
• Buses : a bus is a subsystem that transfers data or power between computer components inside a

computer.

Figure 1.13: General model of a computer

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

22 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

The basic function of a computer is program execution. When a program is running the executable binary �le
is copied from the disk drive into memory. The process of program execution is the retrieval of instructions
and data from memory, and the execution of the various operations.The cycles with complex instruction sets
typically utilize the following stages :

Fetch the instruction from main memory
The CPU presents the value of the program counter (PC) on the address bus. The CPU then fetches

the instruction from main memory via the data bus into the Memory Data Register (MDR). The value from
the MDR is then placed into the Current Instruction Register (CIR), a circuit that holds the instruction so
that it can be decoded and executed.

Decode the instruction
The instruction decoder interprets and implements the instruction.
Fetch data from main memory
Read the e�ective address from main memory if the instruction has an indirect address. Fetch required

data from main memory to be processed and placed into registers.
Execute the instruction
From the instruction register, the data forming the instruction is decoded by the control unit. It then

passes the decoded information as a sequence of control signals to the relevant function units of the CPU to
perform the actions required by the instruction such as reading values from registers, passing them to the
Arithmetic logic unit (ALU) to calculate the result and writing the result back to a register. A condition
signal is sent back to the control unit by the ALU if it is involved.

Store results
The result generated by the operation is stored in the main memory, or sent to an output device. Based

on the condition feedback from the ALU, the PC is either incremented to address the next instruction or
updated to a di�erent address where the next instruction will be fetched. The cycle is then repeated.

1.3.1.2 The Central Processing Unit (CPU)

You may call CPU as the brain of any computer system. It is the brain that takes all major decisions, makes
all sorts of calculations and directs di�erent parts of the computer functions by activating and controlling
the operations.

CPU has four key parts

• Control Unit
• Arithmetic & Logic Unit
• Registers
• Clock

And, of course, wires that connect everything together.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

23

Figure 1.14: Basic Model of the Central Processing Unit (CPU)

Arithmetic Logic Units (ALU)
The ALU, as its name implies, is that portion of the CPU hardware which performs the arithmetic and

logical operations on the binary data .The ALU contains an Adder which is capable of combining the contents
of two registers in accordance with the logic of binary arithmetic.

Control Unit
The control unit, which extracts instructions from memory and decodes and executes them, calling on

the ALU when necessary.
Registers
Registers are temporary storage units within the CPU. Some registers, such as the program counter and

instruction register, have dedicated uses. Other registers, such as the accumulator, are for more general
purpose use.

Clock
A circuit in a processor that generates a regular sequence of electronic pulses used to synchronize oper-

ations of the processor's components. The time between pulses is the cycle time and the number of pulses
per second is the clock rate (or frequency).

The execution times of instructions on a computer are usually measured by a number of clock cycles
rather than seconds. The higher clock rate, the quicker speed of instruction processing. The clock rate for
a Pentium 4 processor is about 2.0, 2.2 GHz or higher

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

24 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.3.1.3 Memory

Memory refer to computer components, devices and recording media that retain digital data used for com-
puting for some interval of time. Computer memory includes internal and external memory.

Internal memory
The internal memory is accessible by a processor without the use of the computer input-output channels.It

usually includes several types of storage, such as main storage, cache memory, and special registers, all of
which can be directly accessed by the processor.

Cache memory : A bu�er, smaller and faster than main storage, used to hold a copy of instructions
and data in main storage that are likely to be needed next by the processor and that have been obtained
automatically from main storage.

Main memory (Main Storage) : addressable storage from which instructions and other data may be
loaded directly into registers for subsequent execution or processing.

Storage capacity of the main memory is the total amount of stored information that the memory can
hold. It is expressed as a quantity of bits or bytes. Each address identi�es a word of storage. So the capacity
of the main memory depends on the number of bits allowed to address. For instance, a computer allows
also 32-bit memory addresses; a byte-addressable 32-bit computer can address 232 = 4,294,967,296 bytes of
memory, or 4 gigabytes (GB). The capacity of the main memory is 4 GB.

The main memory consists of ROM and RAM.

• Random Access Memory (RAM): The primary storage is referred to as random access memory (RAM)
because it is possible to randomly select and use any location of the memory directly store and retrieve
data. It takes same time to any address of the memory as the �rst address. It is also called read/write
memory. The storage of data and instructions inside the primary storage is temporary. It disappears
from RAM as soon as the power to the computer is switched o�.

• Read Only Memory (ROM): There is another memory in computer, which is called Read Only Memory
(ROM). Again it is the ICs inside the PC that form the ROM. The storage of program and data
in the ROM is permanent. The ROM stores some standard processing programs supplied by the
manufacturers to operate the personal computer. The ROM can only be read by the CPU but it
cannot be changed. The basic input/output program is stored in the ROM that examines and initializes
various equipment attached to the PC when the switch is made ON.

External Memory
The external memory holds information too large for storage in main memory. Information on external

memory can only be accessed by the CPU if it is �rst transferred to main memory. External memory is slow
and virtually unlimited in capacity. It retains information when the computer is switched o� and is used to
keep a permanent copy of programs and data.

Hard Disk: is made of magnetic material. Magnetic disks used in computer are made on the same
principle. It rotates with very high speed inside the computer drive. Data is stored on both the surface of
the disk. Magnetic disks are most popular for direct access storage device. Each disk consists of a number
of invisible concentric circles called tracks. Information is recorded on tracks of a disk surface in the form of
tiny magnetic spots. The presence of a magnetic spot represents one bit and its absence represents zero bit.
The information stored in a disk can be read many times without a�ecting the stored data. So the reading
operation is non-destructive. But if you want to write a new data, then the existing data is erased from the
disk and new data is recorded. The capacity of a hard disk is possibly 20 GB, 30 GB, 40 GB, 60 GB or
more.

Floppy Disk: It is similar to magnetic disk discussed above. They are 5.25 inch or 3.5 inch in diameter.
They come in single or double density and recorded on one or both surface of the diskette. The capacity of
a 5.25-inch �oppy is 1.2 mega bytes whereas for 3.5 inch �oppy it is 1.44 mega bytes. The �oppy is a low
cost device particularly suitable for personal computer system.

Optical Disk:With every new application and software (includes sounds, images and videos) there is
greater demand for memory capacity. It is the necessity to store large volume of data that has led to the

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

25

development of optical disk storage medium. There are two commonly used categories of optical disks: CD
with the approximate capacity of 700MB and DVD with the approximate capacity of 4.7GB

Memory Stick (Flash card, �ash drive) a removable �ash memory card format, with 128MB, 256 MB,
512 MB, 1 GB, 2 GB , 4 GB or more capacities

Figure 1.15: Some types of auxiliary memory

1.3.1.4 Input-Output Devices

A computer is only useful when it is able to communicate with the external environment. When you work
with the computer you feed your data and instructions through some devices to the computer. These devices
are called Input devices. Similarly the computer after processing, gives output through other devices called
output devices.

Common input and output devices are: Speakers, Mouse, Scanner, Printer,Joystick, CD-ROM, Keyboard,
Microphone, DVD, Floppy drive, Hard drive, Magnetic tape, and Monitor. Some devices are capable of both
input and output.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

26 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.16: Typical input- output devices

Input Devices
Input devices are necessary to convert our information or data in to a form which can be understood by

the computer. A good input device should provide timely, accurate and useful data to the main memory of
the computer for processing followings are the most useful input devices.

Keyboard: - This is the standard input device attached to all computers. The layout of keyboard is just
like the traditional typewriter. It also contains some extra command keys and function keys. It contains
a total of 101 to 104 keys. You must press correct combination of keys to input data. The computer
can recognize the electrical signals corresponding to the correct key combination and processing is done
accordingly.

Mouse: - Mouse is an input device that is used with your personal computer. It rolls on a small ball
and has two or three buttons on the top.When you roll the mouse across a �at surface the screen censors
the mouse in the direction of mouse movement. The cursor moves very fast with mouse giving you more
freedom to work in any direction. It is easier and faster to move through a mouse.

Scanner: The keyboard can input only text through keys provided in it. If we want to input a picture
the keyboard cannot do that. Scanner is an optical device that can input any graphical matter and display
it back.

Output Devices
Monitor: The most popular input/output device is the monitor. A Keyboard is used to input data and

Monitor is used to display the input data and to receive massages from the computer. A monitor has its
own box which is separated from the main computer system and is connected to the computer by cable. It
can be color or monochrome. It is controlled by an output device called a graphics card. Displayable area
measured in dots per inch, dots are often referred to as pixels. Standard resolution is 640 by 480. Many

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

27

cards support resolution of 1280 by 1024 or better. Number of colors supported varies from 16 to billions
Printer: It is an important output device which can be used to get a printed copy of the processed text

or result on paper. There are di�erent types of printers that are designed for di�erent types of applications.

1.3.1.5 Buses

Bus is a subsystem that transfers data or power between computer components inside a computer or between
computers. Bus can logically connect several peripherals over the same set of wires. Each bus de�nes its set
of connectors to physically plug devices, cards or cables together. The buses are categorized depending on
their tasks:

• The data bus transfers actual data.
• The address bus transfers information about where the data should go.
• The control bus carries signals that report the status of various devices.

1.3.2 Computer Software

1.3.2.1 Data and Algorithms

There are many steps involved in writing a computer program to solve a given problem. The steps go form
problem formulation and speci�cation, to design of the solution, to implementation, testing and documen-
tation, and evaluation the solution.

Once we have a suitable mathematical model for our problem, we attempt to �nd a solution in term of
that model. Our initial goal is to �nd a solution in the form of an algorithm. So what is an algorithm?

Algorithm is a �nite sequence of instructions each of which has a clear meaning and can be performed
with a �nite amount of e�ort in a �nite length of time.

How do you represent an algorithm? The most obvious representation: source code of a programming
language. However, writing source code before you fully understand an algorithm often leads to di�cult-to-
�nd bugs. So, algorithms may be presented ...

1. In words
To present the algorithm in words we may describe the tasks step by step.
2.As a �owchart
A familiar technique for overcoming those bugs involves �owcharts.
A �owchart is a visual representation of an algorithm's control �ow. That representation illustrates

statements that need to execute, decisions that need to be made, logic �ow (for iteration and other purposes),
and terminals that indicate start and end points.

To present that visual representation, a �owchart uses various symbols, which Figure 3.5.shows.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

28 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.17: Flowchart symbol for statements, decisions, logic �ows, etc.

This review was essential because we will be using these building blocks quite often today.
3. In pseudocode
Pseudocode (derived from pseudo and code) is a compact and informal high-level description of a com-

puter programming algorithm that uses the structural conventions of programming languages, but omits
detailed subroutines, variable declarations or language-speci�c syntax. The programming language is aug-
mented with natural language descriptions of the details, where convenient, or with compact mathematical
notation.

Example
Present the algorithm of converting an integer from decimal to binary
a. By words
Step 1: Let x is the decimal integer you want to convert and let k=1
Step 2 : Divide x by 2, saving the quotient as Q, and the remainder (in binary) as Rk

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

29

Step 3 : If Q is not zero, let X=Q, and go back to step 2. Otherwise go to step 4.
Step 4 : Assume step 1-3 were repeated n times. Arrange the remainders as string for digit

RnRn−1...R3R2R1.
b. As a �owchart

Figure 1.18: Flowchart of the algorithm of converting an integer from decimal to binary

c. By pseudocode

BEGIN

input x.

y=''''

remainder=0,

while (x>0)

begin

quotient=x/2

remainder=x mod 2

y=conc(remainder,y)

x=quotient

end

print y

END.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

30 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Example
Bubble Sort
Bubble sort is a simple sorting algorithm. It works by repeatedly stepping through the list to be sorted,

comparing two items at a time and swapping them if they are in the wrong order. The pass through the list
is repeated until no swaps are needed, which indicates that the list is sorted.

5 1 4 2 8 - unsorted array
1 4 2 5 8 - after one pass
1 2 4 5 8 - sorted array
The algorithm gets its name from the way smaller elements "bubble" to the top (i.e. the beginning) of

the list via the swaps.Because it only uses comparisons to operate on elements, it is a comparison sort. This
is the easiest comparison sort to implement.

Here are the presentations of bubble sort algorithm
a. By words
Step 1: Get the length of the list : N and the list: list[1],list[2],. . .,list[N]
Step 2: M ← N.
Step 3: If M < 2 then print the list, stop.
Step 4: M ← M � 1, i ← 0.
Step 5: Increase i by 1
Step 6: If i > M then go to step 3.
Step 7: If list[i] > list[i+1] swap list[i] and list[i+1]
Step 8: Go to step 5.
b. As a �ow chart

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

31

Figure 1.19: Flowchart of bubble sort algorithm

c. In pseudocode
A simple way to express bubble sort in pseudocode is as follows:

BEGIN get length (list) and list's elements

for each M in length(list) down to 2 do:

for each i in 1 to M-1 do:

if list[i] > list[i+1] then

swap(list[i+1], list[i])

end if

end for

end for

end procedure

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

32 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Comparing the three methods,especially pseudocode and �owchart we realized :
Pros and Cons of Flowcharts
In fact, �owcharts are not very useful.The process of writing an algorithm in the form of a �owchart is

just too cumbersome, and then converting this graphical form into code is not straight forward
However, there is another kind of �owcharts � called Structured Flowcharts � that may be better suited

for software developers.
The good thing about �owcharts is that their symbols are quite intuitive and almost universally under-

stood. Their graphical nature makes the process of explaining an algorithm to one's peers quite straightfor-
ward.

Pros and Cons of Pseudocode
Pseudocode are quite suitable for software development as it is closer in form to real code.One can write

the pseudocode, then use it as a starting point or outline for writing real code.
Many developers write the pseudocode �rst and then incrementally comment each line out while convert-

ing that line into real code.Pseudocode can be constructed quite quickly as compared with a �owchart.
Unlike �owcharts, no standard rules exist for writing pseudocode
To design an algorithm, the following characteristics are very

• Exactness
• E�ectiveness
• Guaranteed termination
• Generality

The concept of structured programming says that any programming logic problem can be solved using an
appropriate combination of only three programming structures,

1.Sequence: a sequence of instructions that are executed in the precise order they are written in

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

33

Figure 1.20

2. Conditional : Select between alternate courses of action depending upon the evaluation of a condition

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

34 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.21

Loops: Loop through a set of statements as long as a condition is true

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

35

Figure 1.22

1.3.2.2 Programs and Programming Languages

Programs
A computer program is an algorithm written for a computer in a special programming language.
Programming languages
A programming language is an arti�cial language that can be used to control the behavior of a machine,

particularly a computer. It is de�ned through the use of syntactic and semantic rules, to determine structure
and meaning respectively.

Programming languages are used to facilitate communication about the task of organizing and manipu-
lating information, and to express algorithms precisely.

There are large number of programming language in use. We can identify three type of programming
languages : machine languages, assembly languages, high-level languages.

Machine Languages
Machine code or machine language is a system of instructions and data directly executed by a computer's

central processing unit. Machine code is the lowest-level of abstraction for representing a computer pro-
gram.Instructions are patterns of bits with di�erent patterns corresponding to di�erent commands to the
machine. Machine code has several signi�cant disadvantages : very di�cult for a human to read and write,
a program written on one computer cannot run on a di�erent computer, so it cannot be used to write large
program or program intended to run on di�erent machines.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

36 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Assembly Languages
An assembly language is a low-level language for programming computers. It implements a symbolic

representation of the numeric machine codes and other constants needed to program a particular CPU
architecture.

This representation is usually de�ned by the hardware manufacturer, and is based on abbreviations
(called mnemonics) that help the programmer remember individual instructions, registers, etc. An assembly
language is thus speci�c to a certain physical or virtual computer architecture

A utility program called an assembler, is used to translate assembly language statements into the target
computer's machine code.

Although assembly is more friendly than machine code, use of assembly o�er several disadvantages, for
instance, each type of computer has its own assembly language or programming assembly requires much time
and e�ort.

Hence, assembly language is not use to write large programs. However, there are some computer appli-
cation, such as in writing program that control peripherals, assembly is still a necessity.

High-level languages
A high-level programming language is a programming language that, may be more abstract, easier to

use, or more portable across platforms.
Examples: Pascal, C, Visual Basic, SQL,
Such languages often abstract away CPU operations such as memory access models and management of

scope.These languages have been implemented by translating to machine languages.
There are two types of translators

• Compiler is a program that translate source code from a high-level programming language to a lower
level language (e.g., assembly language or machine language)

• Interpreter is a program that translates and executes source language statements one line at a time.

Figure 1.23 below shows the process of solving problem with computers

Figure 1.23: Steps in software development

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

37

Domain Analysis
Often the �rst step in attempting to design a new piece of software, whether it be an addition to an

existing software, a new application, a new subsystem or a whole new system, is, what is generally referred
to as "Domain Analysis". The more knowledgeable they are about the domain already, the less the work
required. Another objective of this work is to make the analysts who will later try to elicit and gather the
requirements from the area experts or professionals, speak with them in the domain's own terminology and
to better understand what is being said by these people. Otherwise they will not be taken seriously. So, this
phase is an important prelude to extracting and gathering the requirements.

Software Elements Analysis
The most important task in creating a software product is extracting the requirements. Customers typi-

cally know what they want, but not what software should do, while incomplete, ambiguous or contradictory
requirements are recognized by skilled and experienced software engineers. Frequently demonstrating live
code may help reduce the risk that the requirements are incorrect.

Speci�cation
Speci�cation is the task of precisely describing the software to be written, possibly in a rigorous way. In

practice, most successful speci�cations are written to understand and �ne-tune applications that were already
well-developed, although safety-critical software systems are often carefully speci�ed prior to application
development. Speci�cations are most important for external interfaces that must remain stable.

Software architecture
The architecture of a software system refers to an abstract representation of that system. Architecture

is concerned with making sure the software system will meet the requirements of the product, as well as
ensuring that future requirements can be addressed. The architecture step also addresses interfaces between
the software system and other software products, as well as the underlying hardware or the host operating
system.

Implementation (or coding)
Reducing a design to code may be the most obvious part of the software engineering job, but it is not

necessarily the largest portion.
Testing
Testing of parts of software, especially where code by two di�erent engineers must work together, falls to

the software engineer.
Documentation
An important (and often overlooked) task is documenting the internal design of software for the purpose

of future maintenance and enhancement. Documentation is most important for external interfaces.

1.3.2.3 Classi�cation of Computer Software

The software is divided to System Software and Application Software with each having several sub levels.
System software is the low �level software required to manage computer resources and support the

production or execution of application program.
Application software is software program that perform a speci�c function directly for the end user.
System Software includes

• Operating Systems software
• Network Software : network management software, server software, security and encryption software,

etc.
• Database management software
• Development tools and programming language software: software testing tools and testing software,

program development tools, programming languages software
• Etc.

Application Software includes

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

38 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

• General business productivity applications : software program that perform a speci�c function di-
rectly for the end user, examples include : o�ce applications, word processors, spreadsheet, project
management system ,etc.

• Home use applications : software used in the home for entertainment, reference or educational purposes,
examples include games, home education etc.

• Cross-industry application software : software that is designed to perform and/or manage a speci�c
business function or process that is not unique to a particular industry, examples include professional
accounting software, human resources management, Geographic Information Systems (GIS) software,
etc.

• Vertical market application software : software that perform a wide range of business functions for a
speci�c industry such as manufacturing, retail, healthcare , engineering, restaurant, etc.

• Utilities software : a small program that performs a very speci�c task. Examples include : compression
programs, antivirus, search engines, font, �le viewers, voice recognition software, etc.

1.4 Operating Systems4

1.4.1 Basic concepts

An operating system (OS) is the software that manages the sharing of the resources of a computer and
provides programmers with an interface used to access those resources. An operating system processes
system data and user input, and responds by allocating and managing tasks and internal system resources as
a service to users and programs of the system. At the foundation of all system software, an operating system
performs basic tasks such as controlling and allocating memory, prioritizing system requests, controlling
input and output devices, facilitating networking and managing �le systems. Most operating systems come
with an application that provides a user interface for managing the operating system, such as a command
line interpreter or graphical user interface. The operating system forms a platform for other system software
and for application software.

The most commonly-used contemporary desktop operating system is Microsoft Windows, with Mac OS
X also being well-known. Linux and the BSD are popular Unix-like systems.

The operating system is the �rst thing loaded onto the computer � without the operating system, a
computer is useless. In detail, important services that an operating system provides are:

• Create Interface between you and your computer
• Manage the �le system includes directories, folders, �les

• Has a set of commands that allow for manipulation of the �le system: sort, delete, copy, etc.
• Perform input and output on a variety of devices
• Allocate Resources
• Manage the running systems

Categorization of operating systems
All desktop and laptop computers have operating systems. Operating systems are categorized based on

the types of computers they control and the sort of applications they support.

• Single-user, single task
• Single-user, multi-tasking
• Multi-user
• Real-time operating system

4This content is available online at <http://cnx.org/content/m30793/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

39

1.4.1.1 File

A computer �le is a block of arbitrary information, or resource for storing information, which is available
to a computer program and is usually based on some kind of durable storage. A �le is durable in the sense
that it remains available for programs to use after the current program has �nished. Computer �les can
be considered as the modern counterpart of paper documents which traditionally were kept in o�ces' and
libraries' �les, which are the source of the term.

A �lename is a special kind of string used to uniquely identify a �le stored on the �le system of a computer.
Depending on the operating system, such a name may also identify a directory. Di�erent operating systems
impose di�erent restrictions regarding length and allowed characters on �lenames.

Many operating systems, including MS-DOS, Microsoft Windows, allow a �lename extension that consists
of one or more characters following the last period in the �lename, thus dividing the �lename into two parts:
the base name (the primary �lename) and the extension (usually indicating the �le type associated with a
certain �le format). The base name and the extension are separated by a dot.

Commonly, the extension indicates the content type of the �le, for example,
exe: executable �le, txt : text �le, pas : pascal source �le, cpp : C++ source �le. . .
In MS-DOS, Microsoft Windows, you can use wildcards ? and *. ? marks a single character while *

Marks any sequence of characters.
Example *.pas : all pascal source �les of the current directory , possibly t1.pas, book.pas. . .
b*.cpp : all C++ source �les beginning with b.

1.4.1.2 File Management

Structures of Disks
Floppy disk can be single-sided or double-sided. Data is stored on a disk in circular tracks. Tracks are

numbered 0, 1. . . Each track is broken up into arcs called sectors. Each sector stores a �xed amount of
data. The typical formatting of these media provide space for 512 bytes (for magnetic disks) or 2048 bytes
(for optical discs) of user-accessible data per sector.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

40 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.24: Track, sector, cluster

Formatting (initializing) a disk
Disk formatting is the process of preparing a hard disk or other storage medium for use, including setting

up an empty �le system. Formatting a disk includes the following tasks:

• Determines the sector size and placement.
• Slices the disk into sectors by writing codes on the disk.
• Locates bad spots on the disk, locks it out to prevent the bad spot from being used.
• Side number, track number, sector number Þ address : locates where on the disk the computer will

store the data.

Computer �le system
In computing, a �le system is a method for storing and organizing computer �les and the data they

contain to make it easy to �nd and access them. File systems may use a data storage device such as a hard
disk or CD-ROM and involve maintaining the physical location of the �les, or they may be virtual and exist
only as an access method for virtual data.

More formally, a �le system is a set of abstract data types that are implemented for the storage, hierar-
chical organization, manipulation, navigation, access, and retrieval of data.

A typical �le system may contain thousands (or even hundreds of thousands) of directories. Directory
(catalog, or folder) is an entity in a �le system which contains a group of �les and/or other directories.Files are
kept organized by storing related �les in the same directory. A directory contained inside another directory
is called a subdirectory of that directory. Together, the directories form a hierarchy, or tree structure.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

41

This media object is a downloadable �le. Please view or download it at
<51.PNG>

Figure 1.25: Directory tree

The �rst or top-most directory in a hierarchy is the root directory (symbolized by the back slash \)
The current directory is the directory in which a user is working at a given time.
Full name of a �le
A full �lename includes one or more of these components

• Drive (e.g., C:)
• Directory (or path) �le
• Base name of the �le
• Extension

An operating system includes several �les, for instant, MS-DOS includes MSDOS.SYS, IO.SYS, COM-
MAND.COM . . .

1.4.2 Some Common Operating Systems

1.4.2.1 MS-DOS

MS-DOS (short for Microsoft Disk Operating System) is an operating system commercialized by Microsoft.
It was the most commonly used member of the DOS family of operating systems and was the dominant
operating system for the PC compatible platform during the 1980s. It has gradually been replaced on
consumer desktop computers by various generations of the Windows operating system.

MS-DOS employs a command line interface and a batch scripting facility via its command interpreter,
COMMAND.COM.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

42 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.26: The MS-DOS 6.22 command line interface

1.4.2.2 Microsoft Windows

Microsoft Windows is the name of several families of software operating systems by Microsoft. Microsoft
Windows interest in graphical user interfaces (GUI)

MsWindows are introduced in detail in the next section.

1.4.2.3 The Most Common Commands of an Operating Systems

Every operating system need a system of command for managing �les and disks. Commonly used types are
:

• File management : copy, delete, rename, type a �le.
• Directories management: create, remove, copy directories.
• Disk management : disk copy, disk format.

1.4.3 Microsoft Windows

1.4.3.1 Brief History of Microsoft Windows

In 1983 Microsoft announced its development of Windows, a graphical user interface (GUI) for its own
operating system. Windows 3.0, released in 1990, was a complete overhaul of the Windows environment
with the capability to address memory beyond 640K and a much more powerful user interface.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

43

Windows for Workgroups 3.1 was the �rst integrated Windows and networking package o�ered by Mi-
crosoft.Windows for Workgroups also includes two additional applications: Microsoft Mail, a network mail
package, and Schedule+, a workgroup scheduler.

Windows 95, released in August of 1995. A 32-bit system providing full pre-emptive multitasking,
advanced �le systems, threading, networking and more.Also includes a completely revised user interface.

Windows 98, released in June of 1998. Integrated Web Browsing gives your desktop a browser-like
interface.

Windows 2000 provides an impressive platform of Internet, intranet, extranet, and management applica-
tions that integrate tightly with Active Directory.

In September 2000 Microsoft released Windows Me, short for Millennium Edition, which is aimed at the
home user. The Me operating system boasts some enhanced multimedia features, such as an automated
video editor and improved Internet plumbing.

Windows XP-Microsoft o�cially launches it on October 25th. 2001.XP is a whole new kind of Windows
for consumers. Under the hood, it contains the 32-bit kernel and driver set from Windows NT and Windows
2000. Naturally it has tons of new features that no previous version of Windows has.

Windows Vista is a line of graphical operating systems used on personal computers, including home and
business desktops, notebook computers, Tablet PCs, and media centersWindows Vista contains hundreds
of new and reworked features; some of the most signi�cant include an updated graphical user interface and
visual style dubbed Windows Aero, improved searching features, new multimedia creation tools such as
Windows DVD Maker, and completely redesigned networking, audio, print, and display sub-systems.

Originally developed as a part of its e�ort to introduce Windows NT to the workstation market, Microsoft
released Windows NT 4.0, which features the new Windows 95 interface on top of the Windows NT kernel.

Windows NT (New Technology) is a family of operating systems produced by Microsoft, the �rst version
of which was released in July 1993. It was originally designed to be a powerful high-level-language-based,
processor-independent, multiprocessing, multiuser operating system with features comparable to Unix. It
was intended to complement consumer versions of Windows that were based on MS-DOS. NT was the �rst
fully 32-bit version of Windows, whereas its consumer-oriented counterparts, Windows 3.1x and Windows 9x,
were 16-bit/32-bit hybrids. Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008 (beta), and Windows Home Server are based upon the Windows NT system, although they are
not branded as Windows NT.

Windows XP is the most popular version of Microsoft Windows. Windows provides a graphical interface,
through which you can run programs, manage �les, connect to the internet, and perform many other task
as well.

1.4.3.2 How to start and exit from Windows XP

1.4.3.2.1 Starting Windows XP

Windows XP starts automatically when you turn on your computer. Depending on the way your PC is
currently set up, you may be prompted to select a user account when you start up your PC. Windows will
display a welcome screen, from which you click your user name and indicate who you are by entering your
password.

Once Windows XP has initialized, the following screen will appear.
Each user has his own ideas about what constitutes attractive screen colors, important shortcut to place

on the desktop etc. This combination can be saved as user pro�le and Windows remembers all the setting
and preferences.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

44 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.27

1.4.3.2.2 Shutting down Windows XP

When you �nished using your PC, you shouldn't turn o� the power because that could cause later problems
in Windows. Instead, you should use the Shut Down command on the Start menu (or press Ctrl+Esc if the
Start menu is invisible). This approach ensure that Windows shuts down in an orderly way that closes all
opened �les and saves your work in any open program.

When shutting down, you have two options: Turn O� and Restart. If you are probably to be away from
the computer, you will probably want to turn it o�. If the computer is acting strangely and you want to
start fresh, you will want to refresh.

If for some reason, the computer is not ready to shut down , the computer will remind you in dialog
boxes.

1.4.3.3 Basic Terms and Operations

The Icons
On the desktop we have icons that allow us to open the corresponding program.

For example, by clicking on the icon Internet Explorer will open up.
The windows
All the windows have the same structure;The window above is the one that opens when you click on My

Computer. Its structure is very similar to the others.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

45

Figure 1.28

All the windows are formed by:

• The title bar contains the name of the program you are working with and in some cases the name of the
opened document also appears. In the top right corner we can �nd the minimize, maximize/restore,
and close buttons.

• The minimize button shrinks the window it turns it into a button located in the WindowsXP
task bar.

• The maximize ampli�es the size of the window to the whole screen.

• The restore button restores the window to its original state.

• The close button closes the window. If we have modi�ed the document, we are asked if we want
to save the changes before closing.

The dialog boxes

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

46 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

The dialog box is a small window-like box that opens after an operation has been selected. In it, you
select options and settings to tailor the operation before it proceeds.

Figure 1.29

Text box : a control in which a user can enter texts (or numbers).
List box : a box that contains a list of selectable items. In some instances, you select an arrow button

on the right of the box in order to display the selectable items.
Combo box : a combination of a drop-down list or list box and a single-line textbox, allowing the user

either to type a value directly into the control or choose from the list of existing options.
Check box : a control that permits the user to make single selection or multiple selections from a

number of options. Normally, check boxes are shown on the screen as a square box that can contain white
space (for false) or a tick mark or X (for true).

Command Button: A control used to initiate an action. The most common buttons are :

• OK
• Close
• Cancel
• Apply
• Default

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

47

1.4.3.4 Using a computer mouse

Use the mouse to interact with items on your screen as you would use your hands to interact with objects
in the physical world. You can move objects, open them, change them, or throw them away, among other
things.

A mouse has a primary and secondary mouse button. Use the primary mouse button to select and click
items, position the cursor in a document, and drag items.

Use the secondary mouse button to display a menu of tasks or options that change depending on where
you click. This menu is useful for completing tasks quickly. Clicking the secondary mouse button is called
right-clicking.

The primary mouse button is normally the left button on the mouse. On a trackball, the primary mouse
button is normally the lower button.

You can reverse the buttons and use the right mouse button as the primary button.Most mice now include
a wheel that helps you to scroll through documents more easily.

Pointing
Pointing at items on the screen is the most basic mouse function. When instructions tell you to point

your mouse at something, move your mouse on your desk until the mouse pointer is pointing at the object
on the screen you need to select.

Clicking
After you have pointed your mouse at an item, you can click on the item to select it.
Double clicking
To double-click an item, point at the item and press your primary button twice quickly without moving

the mouse. Double-clicking allows two di�erent actions to be associated with the same mouse button.
Often, single-clicking selects (or highlights) an object, while a double-click executes that object, but this is
not universal.

Drag and drop
to move the item from one place to another using the mouse. Point at the item you need to move, and

single click on it. Instead of releasing the mouse button after clicking, hold it down, and move your mouse
to where you want to move the item. Release the mouse button to drop the item into place.

Right clicking
Right-clicking an item usually brings up a menu of actions you can take with the item. To right-click,

point at an item and press the secondary (right) button on your mouse.

1.4.3.5 The Control Panel

Control Panel allows users to view and manipulate basic system settings and controls, such as adding
hardware, adding and removing software, controlling user accounts, and changing accessibility options.

To start the Control Panel, from the Start menu, click on Control Panel. Here is the Control Panel
window:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

48 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.30

.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

49

1.4.3.5.1 Con�guring the Screen

Con�guring the screen is important because sometimes we spend many hours in front of the screen, so we
hope it can be the most comfortable as possible.

Open the Display Tool (or right-click somewhere that has no icons on the desktop and select the option
Properties from the shortcut menu that is displayed. The Display properties window will appear where we
can change the con�guration parameters.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

50 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.31

Change the background or wallpaper,
Click on the tab labeled Desktop and choose a new background or wallpaper from the list that appears

at the bottom left corner. It is also possible to have another image that does not appear on the list as
background. Click on Browse... and look for the image you want as long as the format is compatible. For
example .bmp, .jpg, .gif.Once the image and type of view have been selected Click OK.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

51

1.4.3.5.2 The screensaver

Sometimes the computer remains inactive a few minutes. It is recommended to have a screensaver to avoid
having a still image on the screen too long because this can damage the monitor.

From the list, choose the screensaver you like best; a small preview is shown above.
You can modify the time it takes for the screensaver to appear by adjusting the time on Wait.

1.4.3.5.3 Con�guring the Mouse

The mouse is a tool that is used constantly and it is recommendable to have it set up to our needs as well
as possible. In the following page we show you how to set it up to your own needs.

The Buttons
On the Buttons tab you can adjust the set up of the mouse to suit your needs.If you are left handed.

WindowsXP allows you to change the con�guration of the buttons so that the right button realizes these
functions.

We can also adjust the Double-click speed for a slower or a faster double-click.
The pointer
On the Pointers tab we can choose the type of pointer the mouse is to have when it moves, when it is

busy, when it is used, etc.

1.4.3.5.4 Adding or removing Programs

• Click on the Start button and choose Control Panel
• Click on Add or Remove Programs option, a window will display with the three basic options shown

on the left side of the picture as it appears below. Then click on Add New Programs.The window will
appear where we can change the con�guration parameters.

• Follow the instruction
• The Add or Remove Programs window will appear where we can add, change or remove programs

following the instructions..

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

52 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.32

1.4.3.5.5 Changing the Regional and Language Options

You can use the Regional and Language Options tool in Control Panel to customize the way Windows
handles dates, times, currency values, and numbers.

To open the Regional and Language Options tool

• Click Start, and then click Control Panel.
• Click Date, Time, Language, and Regional Options, and then click Regional and Language Options.
• To change one or more of the individual settings, click Customize.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

53

Figure 1.33

To Change the Date In the Customize Regional Options dialog box, click the Date tab to specify any changes
you want to make to the short date and the long date.

To Change the Time In the Customize Regional Options dialog box, click the Time tab to specify any
changes you want to make.

To Change the Currency Value Display
In the Customize Regional Options dialog box, click the Currency tab to specify any changes you want

to make. You can change the currency symbol, the formats used for positive or negative amounts, and the
punctuation marks.

To Change the Number Display
In the Customize Regional Options dialog box, click the Numbers tab to specify any changes you want

to make. You can change the decimal symbol and list separator, the format used for negative numbers and
leading zeros, and the measurement system (U.S. or metric).

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

54 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.4.3.5.6 Add a printer

• Click on Printer and Faxes
• Click on Add a Printer, follow the instruction of the Add Printer Wizard

1.4.3.5.7 Delete a printer

• Click on Printer and Faxes
• Click on the printer you wish to delete.
• Press your Delete key to delete the printer.

1.4.3.6 The Windows Explorer

The Explorer is an indispensable tool in an operating system, since with it we can organize and control the
�les and folders of the di�erent storage systems at our disposal such as the hard drive, disk drive, etc.

The Windows Explorer is also known as the File Manager. Through it we can delete, see, copy, or move
�les and folders.

1.4.3.6.1 Starting the Explorer

The quickest way to start up the Explorer is through the icon on the task bar or desktop. If you
don't already have the icon created, you can open the Explorer as follows:

• Click on Start [U+F0AE] Select All programs [U+F0AE] Select Accessories [U+F0AE] Select Windows
Explorer

• Right click on Start button and select Explore
• From the Start button, choose My documents, My images or My music; the di�erence is that in these

cases we will go directly to those folders.

1.4.3.6.2 The Explorer's window

The explorer consists basically of two sections. On the left side there is the directory tree, which is the list
of units and folders that we have. Only units and folders appear, no �les. On this image we can see a few
folders such as My Documents, aulaclic, ... the My Computer icon, My Network Places and the Recycle Bin.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

55

Figure 1.34

On the right side there is another section, which will show the content of the folder that we have opened
on the left section. This section shows its folders and �les. In this case the �les that are contained in the
folder WinXP appear. Depending on the type of view that we have activated we will see di�erent type of
information regarding the �les.

Next we will explain the di�erent bars that make up this window.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

56 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

Figure 1.35

The standard bar contains the buttons for the most used operations.
If this bar is not visible select from the menu View, the option Toolbars, next select the option Standard

buttons.

The Back button will allow us to go to the last page that we have seen. The button
next to it, when activated, allows us to move one page forward.

The up button will allow us to go up one level, which means going back to the folder that contains
the folder we are working with.

The search button displays a window where we can search for the �le we want.

The folders button shows the folder's structure on the left side of the screen, or it can display an
area with the most frequent tasks, depending on the �le we have selected. In this area we can �nd, among
others, the following buttons:

The last button allows us to change the views on the folders (view details, Thumbnails,...)
We'll explain this in more detailed on the next page.

Figure 1.36

The Address Bar is well known for Internet because it shows the address of the web we are viewing. With
Windows Explorer it functions the same way, but it shows the name of the folder we are working with.

If we click on the black arrow it will show the structure with our computer's drives.
If we write a name in the address bar and we click on the green arrow, it will search for this name.
Windows explorer allows us to see the folder's information in di�erent ways or views to facilitate speci�c

searching.
Go to the folder you wish to see:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

57

If you click on the arrow of the button a menu with the following options will appear:

Figure 1.37

Tiles. The �les and folders are shown with large images with the name, �le type and size in KB; if it is
a picture �le the size is shown in pixels. The elements are organized one next to the other from left to right.

Icons. The �les are represented with an icon smaller than a tile. The only information shown is the
name of the �le. This type of icon is used when the selected folder has an average quantity of elements.

List. Shows small icons, one below the other, so it's easier to search by name. On this view, only the
name of the �le or folder appears.

Details. Icons are shown one below the other, with some of their properties. This type of display is used
when we want to �nd an element with certain characteristics, such as size, �le type, date of modi�cation,
etc.

With this type of view we can organize the elements by size, modi�cation date, name, etc.
For example, to organize by the modi�cation date it is enough to click on the box Date Modi�ed, and it

will arrange the �les by date from greater to lesser. If we click on it again it will arrange it from lesser to
greater. The older dates are considered lesser.

On the views List or Details the elements appear one below the other and in the case of deleting or
adding, the elements will reorganize themselves.

Thumbnails . A small representation of the content will appear with the format of the image, such as
jpg., jpeg., bmp., gif., etc.

Filmstrip. This view is only available for images. On the bottom part a strip will appear with the
images in thumbnail format and on the top we will see a larger representation of the image selected on the
bottom.

1.4.3.6.3 Opening Files

Choose one of the following ways:

• Double click on the �le's icon.
• Right click on the �le's icon. Select Open
• Select the �le and press Enter.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

58 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.4.3.6.4 Selecting Files

If you wish to select a single �le or folder you simply need to click on it. This way any operation you perform
will only apply to the selected �le or folder.

If you wish to realize an operation on several �les or folders, Windows Explorer will allow you to select
several elements at the same time.

To select consecutive elements
Click on the �rst element and then click on the last element while keeping Shift key pressed. This can also

be done with the mouse. To do this, click on the left of the �rst element (but not on it) and, without letting
go, drag it. A frame should appear that shows the area that the frame encompasses. Continue dragging
until all the desired elements are within the frame, then let go of the left mouse button..

To select several elements that are not consecutive
Select the �rst element and continue to select the desired elements while keeping the Ctrl key pressed.

1.4.3.6.5 Creating and Deleting Folders

To create a folder we need to place the pointer where we want the folder to be.Open the folders that we have
by clicking on the + located to the left of the folders.

If we click on the plus sign of a particular folder it will display and show all of the folders contained in it
and the plus sign will become a minus sign -; this will take care of retracting the folders displayed, or hide
the content of the folder selected.

Once we have the folder that we want open we will select it by clicking on the appropriate folder .Open
the menu File, select the option New and then select the option Folder.

Now we can view on the bottom right window a new folder that has the name New Folder. This is the
name that Windows gives new folders by default. In the event that it �nds another folder with that same
name, it will subsequently name the new folders New Folder(1), New Folder(2), etc...

The name of the folder can be changed

1.4.3.6.6 Deleting folders

To Delete a folder, �rst place the pointer on it.
Once the folder has been selected go to the Standard bar and click on or you can use Delete.
When we delete a folder or �le, by default Windows will move it to the Recycle Bin. The settings can

be changed so that it deletes it completely.
The Recycle Bin is nothing more than a space reserved on the hard disk so that in case of having deleted

any element it would be possible for us to retrieve it.
Deleting Files
To delete a �le we follow the same steps to delete a folder, but instead of selecting a folder select the �le

you wish to delete.

1.4.3.6.7 Copying Files or Folders

Select the element to be copied.Click on Copy and it will open a dialog box titled Copy Items. If we do not
have this button on the tool bar, we can go to the Edit menu and select Copy to Folder... First select the
item to copy

Search for the folder to which we will copy the selected element. It works like Windows explorer. If we
click on the + that appears on the left, the contents of the folder will be displayed.

Once the folder has been selected, click on Copy.
In the case of not having the folder created to which we want to copy to, click Make new folder, write

the name of the new folder and Click OK.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

59

1.4.3.6.8 Moving Files or Folders

Moving a �le or folder means copying the element to the desired location and then deleting its original
location. The following steps are very similar.

• Select the �le or folder you want to move.

• Click on , or Edit �> Move to Folder which will open a new window titled Move Items.

• Search for the folder where the element are to be moved to.

• Once the folder is selected, click Move.

• In the case of not having the folder created to which we want to move the information to, simply click
Make New Folder.

• Write the name of the new folder.Click OK.

When moving or copying an item, its name can coincide with the name of a �le or folder that is in the
destination folder. In this case Windows will ask if we want to substitute the existing �le or folder by the
new one. When folder is moved or copied, its entire content is also moved or copied.

1.4.3.6.9 Changing the name of a File or Folder

• Select the �le or folder that you want to change the name of.

• With the right mouse button click on it.

• Select Rename from the shortcut menu, then the name of the �le or folder will be highlighted and with
the pointer blinking inside the name box.

• Write the new name.

• Click Enter or click outside the �le or folder so that the changes take place.

• You can also do this with Rename option from File menu.

1.4.3.6.10 Files and Folders Properties

Both �les and folders have their own characteristics, for example size, location, date of creation, attributes,
etc.

To know the characteristics of a particular �le or folder we need to:

• select it and choose Properties option from File menu,or,
• click on it with the right mouse button and select the option Properties from the menu that is displayed.

Click on the OK button to accept or the Cancel button to discard all changes.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

60 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.4.3.7 Run a program on Windows

To run a program on Windows, you would do the following steps:

• Click on the Start menu
• Click on the Run option
• Type the name and the directory of the �le in the Open �eld (or click on Browse button if you do not

know its location)
• Click on the OK button

1.4.3.8 The Command Prompt

Before Windows was created, the most common operating system that runs on PC was DOS. Though
Windows does not run on DOS, they do have something called the command prompt, which has a similar
appearance to DOS.

Figure 1.38

To use the command prompt you would type in the commands and instructions you want and press enter.

1.4.3.9 The Recycle Bin

The recycle bin provides a safety net when deleting �les and folders. When you delete any of these items
from your hard disk, Windows places it in the Recycle Bin. Items deleted from a �oppy disk or a network
drive are permanently deleted and are not sent to the Recycle Bin.

Items in the Recycle Bin remain there until you decide to permanently delete them from your computer.
To delete or restore �les in the Recycle Bin
On the desktop, double-click Recycle Bin.Do one of the following:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

61

• To restore an item, right-click it, and then click Restore.
• To restore all of the items, on the Edit menu, click Select All, and then on the File menu, click Restore.
• To delete an item, right-click it, and then click Delete.

1.5 Computer Networks5

1.5.1 History of Computer Networks

Computer network
Computer network is composed of multiple connected computers that communicate over a wired or

wireless medium to share data and other resources.
Network data protocols are used to communicate on the network between computers.
The size and scalability of any computer network are determined both by the physical medium of com-

munication and by the software controlling the communication (i.e., the protocols).
The �eld of computer networking and today's Internet trace their beginnings back to the early 1960s, a

time at which the telephone network was the world's dominant communication network. The global Internet's
origin was the Advanced Research Projects Agency Network (ARPANET) of the U.S. Department of Defense
in 1969 Nowadays, computer networks are developed rapidly

1.5.2 Classi�cation of Computer Networks

Networks can be categorized in several di�erent ways, for example,

• By network layer
• By scale
• By connection method
• By functional relationship
• By network topology
• By protocol

1.5.2.1 Classi�cation by scale

A Local Area Network (LAN) is a group of computers and associated devices that share a common com-
munications line and typically share the resources of a single processor or server within a small geographic
area

A Wide Area Network (WAN) is a computer network that spans a relatively large geographical area
(diameter of about 200 km)

GAN (Global Area Network) A network spanning a between geographically distinct cities

1.5.2.2 Classi�cation by functional relationship

Server based (client/server):Computers set up to be primary providers of services such as �le service or
mail service.

The computers providing the service are called servers
The computers that request and use the service are called client computers.
Peer-to-peer
Various computers on the network can act both as clients and servers.
Example Many Microsoft Windows based computers allow �le and print sharing.
Many networks are combination peer-to-peer and server based networks.

5This content is available online at <http://cnx.org/content/m27727/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

62 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.5.3 Major Components of a Computer Network

A computer network possibly includes :

• Computers: critical elements of any computer network. They can be considered nodes
• A network card, NIC (network interface card) is a piece of computer hardware designed to allow

computers to communicate over a computer network.
• Network media (sometimes referred to as networked media) refers to media mainly used in computer

networks : cable, telephone line or wireless.
• Network connection equipments : HUB, SWITCH, ROUTER,etc.
• Network Operating System (NOS) is an operating system that includes special functions for connecting

computers and devices into a local-area network (LAN) or Inter-networking. Some popular NOSs for
DOS and Windows systems include Novell NetWare, Windows NT and 2000, Sun Solaris and IBM
OS/2.

• Network software.
• Network services, for example email.

1.5.3.1 Network Topology

Network topology is the arrangement or mapping of the elements (links, nodes, etc.) of a network, especially
the physical (real) and logical (virtual) interconnections between nodes .

There are three basic categories of network topologies:

• Physical topologies
• Signal topologies
• Logical topologies

Here are some physical topology

1.5.3.2 Point to point

The simplest topology is a permanent link between two endpoints. Switched point-to-point topologies are
the basic model of conventional telephony. The value of a permanent point-to-point network is the value of
guaranteed, or nearly so, communications between the two endpoints. The value of an on-demand point-to-
point connection is proportional to the number of potential pairs of subscribers.

Figure 1.39: Network Topology (Point to Point)

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

63

1.5.3.3 Bus

Bus networks (not to be confused with the system bus of a computer) use a common backbone to connect all
devices. A single cable, the backbone functions as a shared communication medium that devices attach or
tap into with an interface connector. A device wanting to communicate with another device on the network
sends a broadcast message onto the wire that all other devices see, but only the intended recipient actually
accepts and processes the message.

1.5.3.4 Ring

In a ring network, every device has exactly two neighbors for communication purposes. All messages travel
through a ring in the same direction (either "clockwise" or "counterclockwise"). A failure in any cable or
device breaks the loop and can take down the entire network.

Figure 1.40: Network Topology (Broadcast)

1.5.4 The Internet

1.5.4.1 History of the Internet

The history of the Internet dates back to the early development of communication networks. The idea
of a computer network intended to allow general communication between users of various computers has
developed through a large number of stages. The melting pot of developments brought together the network
of networks that we know as the Internet. This included both technological developments, as well as the
merging together of existing network infrastructure and telecommunication systems.

The earliest versions of these ideas appeared in the late 1950s. Practical implementations of the concepts
began during the late 1960s and 1970s. By the 1980s, technologies we would now recognize as the basis of
the modern Internet began to spread over the globe. In the 1990s the introduction of the World Wide Web
saw its use become commonplace.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

64 CHAPTER 1. INTRODUCTION TO COMPUTER SCIENCE

1.5.4.2 Internet Services

• FTP (Filer Transfer Protocol)
• Telnet
• WWW
• Email
• Chat

1.5.4.3 Advantages of the Internet

The Internet or the World Wide Web is indeed a wonderful and amazing addition in our lives. The Internet
can be known as a kind of global meeting place where people from all parts of the world can come together.
The major advantages of the internet are:

• E-mail: E-mail is an online correspondence system. With e-mail you can send and receive instant
electronic messages, which works like writing letters.

• Access Information: The Internet is a virtual treasure trove of information. The `search engines' on
the Internet can help you to �nd data on any subject that you need.

• Shopping: Along with getting information on the Internet, you can also shop online. There are many
online stores and sites that can be used to look for products as well as buy them using your credit card

• Online Chat: There are many `chat rooms' on the web that can be accessed to meet new people, make
new friends, as well as to stay in touch with old friends.

• Downloading Software: You can download innumerable, games, music, videos, movies, and a host of
other entertainment software from the Internet, most of which are free.

1.5.4.4 How to Connect to the Internet?

Before you can connect to the Internet and access the World Wide Web, you need to have certain equipment:

• The Hardware: Modem (dial up, ADSL) or Ethernet Card
• The Software: Operating System, Connection Software
• The Browser
• Connection Options: Dial up, Cable, ADSL, Wireless. . .
• Locating Internet Access Providers

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

Chapter 2

The C programming languages

2.1 Introduction to C1

2.1.1 History of the C Programming Language

C is a general-purpose programming language with features economy of expression, modern �ow control and
data structures, and a rich set of operators.

C was developed at Bell Laboratories in 1972 by Dennis Ritchie. Many of its principles and ideas were
taken from the earlier language B and B's earlier ancestors BCPL and CPL. CPL (Combined Programming
Language) was developed with the purpose of creating a language that was capable of both high level,
machine independent programming and would still allow the programmer to control the behavior of individual
bits of information.

There are some of C's characteristics that de�ne the language and also have lead to its popularity as a
programming language. Naturally we will be studying many of these aspects throughout the course.

• Small size
• Extensive use of function calls
• Loose typing � unlike PASCAL
• Structured language
• Low level (BitWise) programming readily available
• Pointer implementation - extensive use of pointers for memory, array, structures and functions.

C has now become a widely used professional language for various reasons.

• It has high-level constructs.
• It can handle low-level activities.
• It produces e�cient programs.
• It can be compiled on a variety of computers.

Its main drawback is that it has poor error detection which can make it o� putting to the beginner. However
diligence in this matter can pay o� handsomely since having learned the rules of C we can break them. Not
many languages allow this. This if done properly and carefully leads to the power of C programming.

C's power and �exibility soon became apparent. Because of this, the Unix operating system which was
originally written in assembly language, was almost immediately re-written in C (only the assembly language
code needed to "bootstrap" the C code was kept). During the rest of the 1970's, C spread throughout many
colleges and universities because of it's close ties to Unix and the availability of C compilers. Soon, many
di�erent organizations began using their own versions of C causing compatibility problems. In response to

1This content is available online at <http://cnx.org/content/m27752/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

65

66 CHAPTER 2. THE C PROGRAMMING LANGUAGES

this in 1983, the American National Standards Institute (ANSI) formed a committee to establish a standard
de�nition of C which became known as ANSI Standard C. Today C is in widespread use with a rich standard
library of functions.

2.1.2 The Integrated Development Environment of C++ 3.0

Start Turbo C++ IDE
Change to directory C:\TC\BIN
Run TC.EXE
The screen should look like Figure 2.1

Figure 2.1: C++ IDE

Select the File menu to create a new �le or open an existing �le to edit.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

67

Figure 2.2

Choose a �le to open. This screen allow you to change to your directory.

Figure 2.3: Change directory dialog box

Compile and run a program
To compile a program , use F9 or the compile menu

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

68 CHAPTER 2. THE C PROGRAMMING LANGUAGES

Figure 2.4

To run a program, use the run menu or press Ctrl + F9
If your program have no syntax error, the user screen look like in Figure 2.5

Figure 2.5: The user screen of C++ 3.0

To exit from IDE, select the �le menu, choose quit or press Alt+X

2.1.3 Basic Components of C Programs

2.1.3.1 Symbols

A C program consists of the following characters:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

69

26 capital letter of English alphabet : A, B, C, D, X, Y, Z
26 small letter of English alphabet : a, b, c, d,x, y, z
10 digits : 0, 1, . . . 9
Math operators : + - * / = < >
Other symbols : |, \, # , %, ∼,

2.1.3.2 Key Words

A keyword is an identi�er which indicate a speci�c command. Keywords are also considered reserved words.
You shouldn't use them for any other purpose in a C program.

The most important keywords of Turbo C are

asm auto break case char const continue default

do double else enum extern �oat for goto

if int long register return short signed sizeof

static struct switch typedef union unsigned void volatile

while

Table 2.1

2.1.3.3 Identi�ers

Identi�ers or names refer to a variety of things : functions; tag of structures, union and enumerations; member
of structures or unions; enumeration constants; typedef names and objects. There are some restrictions on
the names .

Names are made up of letters and digit; The �rst character must be a letter. The underscore �_� count
as a letter; sometime it is useful for improving the readability of long variable names. For example, name
unit_price is easier to understand than unitprice. However, don't begin variable names with underscore,
since library routines often use such names.

Upper and lower case are distinct, so x and X are di�erent names. Traditional C practice use lower case
for variable names, and all upper case for symbolic constant.

Only the �rst 31 characters are signi�cant.
Keywords are reserved: you can't use them as variable names.
Example The following names are valid
i, x, b55, max_val
and the following names are invalid

12w the �rst character is a digit

income tax use invalid character � �

char char is a keyword

Table 2.2

It is wise to choose variable names that are related to the purpose of the variable, for example,
count_of_girls, MAXWORD.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

70 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.1.3.4 Data Types

Data is valuable resources of computers. Data may comprise numbers, text, images . . .
They belong to di�erent data types.
In programming languages, a data type is a set of values and the operations on those values.
For example, int type is the set of 32-bit integers within the range -2,147,483,648 to 2,147,483,647 together

with the operations described in the following table.

Operations Symbol

Opposite -

Addition +

Subtraction -

Multiplication *

Division /

Modulus %

Equal to = =

Greater than >

Less than <

. . .

Table 2.3

A data type can also be thought of as a constraint placed upon the interpretation of data in a type system
in computer programming.

Common types of data in programming languages include primitive types (such as integers, �oating point
numbers or characters), tuples, records, algebraic data types, abstract data types, reference types, classes
and function types. A data type describes representation, interpretation and structure of values manipulated
by algorithms or objects stored in computer memory or other storage device. The type system uses data
type information to check correctness of computer programs that access or manipulate the

data.

2.1.3.5 Constants

In general, a constant is a speci�c quantity that does not or cannot change or vary. A constant's value is
�xed at compile-time and cannot change during program execution. C supports three types of constants :
numeric, character, string.

Numeric constants of C are usually just the written version of numbers. For example 1, 0, 56.78, 12.3e-4.
We can specify our constant in octal or hexadecimal, or force them to be treated as long integers.

• Octal constants are written with a leading zero : -0.15
• Hexadecimal constants are written with a leading 0x : 0x1ae
• Long constants are written with a trailing L : 890L or 890l

Character constants are usually just the character enclosed in single quotes; `a', `b', `c'. Some characters
can't be represented in this way, so we use a 2 character sequence (escape sequence).

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

71

`\n' newline

`\t' horizontal tab

`\v' vertical tab

`\b' backspace

`\r' carriage return

`\\' backslash

`\� single quote

`\� ' double quotes

`\0' null (used automatically to terminate character strings)

Table 2.4

Character constants participate in numeric operations just as any other integers (they are represented
by their order in the ASCII character set), although they are most often used in comparison with other
characters.

Character constants are rarely used, since string constants are more convenient. A string constant is a
sequence of characters surrounded by double quotes e.g. �Brian and Dennis�.

A character is a di�erent type to a single character string. This is important.
It is helpful to assign a descriptive name to a value that does not change later in the program. That is

the value associated with the name is constant rather than variable, and thus such a name is referred to as
symbolic constant or simply a constant.

2.1.3.6 Variables

Variables are the names that refer to sections of memory into which data can be stored.
Let's imagine that memory is a series of di�erent size boxes. The box size is memory storage area

required in bytes.In order to use a box to store data, the box must be given a name, this process is known
as declaration. It helps if you give a box a meaningful name that relates to the type of information and it
is easier to �nd the data.The boxes must be of the correct size for the data type you are going to put into
it. An integer number such as 2 requires a smaller box than a �oating point number as 123e12.

Data is placed into a box by assigning the data to the box. By using the name of the box you can retrieve
the box contents, some kind of data.

Variable named by an identi�er. The conventions of identi�ers were shown in 1.3.3.
Names should be meaningful or descriptive, for example, studentAge or student_age is more meaningful

than age, and much more meaniful than a single letter such as a.

2.1.3.7 Operators

Programming languages have a set of operators that perform arithmetical operations , and others such
as Boolean operations on truth values, and string operators manipulating strings of text. Computers are
mathematical devices , but compilers and interpreters require a full syntactic theory of all operation in order
to parse formulae involving any combination correctly.

2.1.3.8 Expressions

An expression in a programming language is a combination of values, functions, etc. interpreted according
to the particular rules of precedence and association for a particular programming language, which computes
and returns another value.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

72 CHAPTER 2. THE C PROGRAMMING LANGUAGES

C expressions are arranged in the following groups based on the operators they contain and how you use
them:

• Arithmetic expression
• Conditional expression
• Assignment expression
• Comma expression
• lvalue
• Constant expression

Expressions are used as

• Right hands of assignment statements
• Actual parameters of functions
• Conditions of if statements
• Indexes of while statements
• Operands of other expressions

2.1.3.9 Functions

A subprogram (also known as a procedure or subroutine) is nothing more than a collection of instructions
forming a program unit written independently of the main program yet associated with it through a trans-
fer/return process. Control is passed to the subprogram at the time its services are required, and then
control is returned to the main program after the subprogram has �nished.

The syntax used to represent the request of subprogram varies among the di�erent language. The
techniques used to describe a subprogram also varies from language to language. Many systems allow such
program units to be written in languages other than that of the main program.

In most procedural programming languages, a subprogram is implemented as though it were completely
separate entity with its own data and algorithm so that an item of data in either the main program or the
subprogram is not automatically accessible from within the other. With this arrangement, any transfer of
data between the two program parts must be speci�ed by the programmer. This is usually done by listing the
items called parameters to be transferred in the same syntactic structure used to request the subprogram's
execution.

The names used for the parameters within the subprogram can be thought of as merely standing in for
the actual data values that are supplied when the subprogram is requested. As a result, you often hear them
called formal parameters, whereas the data values supplied from the main program are refereed to actual
parameters.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

73

Figure 2.6

C only accept one kind of subprogram, function. A function is a sub program in which input values
are transferred through a parameter list. However, information is returned from a function to the main
program in the form of the �value of the function�. That is the value returned by a function is associated
with the name of the function in a manner similar to the association between a value and a variable name.
The di�erence is that the value associated with a function name is computed (according to the function's
de�nition) each time it is required, whereas when a variable `s value is required, it is merely retrieve from
memory.

C also provide a rich collection of built-in functions.There are more than twenty functions declared in
<math.h>. Here are some of the more frequently used.

Name Description Math Symbols Example

sqrt(x) square root
√

x sqrt(16.0) is 4.0

pow(x,y) compute a value taken to an exponent, xy xy pow(2,3) is 8

exp(x) exponential function, computes ex ey exp(1.0) is 2.718282

log(x) natural logarithm ln x log(2.718282) is 1.0

log10(x) base-10 logarithm log x log10(100) is 2

sin(x) sine sin x sin(0.0) is 0.0

cos(x) cosine cos x cos(0.0) is 1.0

tan(x) tangent tg x tan(0.0) is 0.0

ceil(x) smallest integer not less than parameter dxe ceil(2.5) is 3; ceil(-2.5) is �2

�oor(x) largest integer not greater than parameter bxc �oor(2.5) is 2; �oor(-2.5) is �3

Table 2.5

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

74 CHAPTER 2. THE C PROGRAMMING LANGUAGES

Library
The library is not part of the C language proper, but an environment that support C will provide the

function declarations and type and macro de�nitions of this library.The functions, types and macro of the
library are declared in headers.

C header �les have extensions .h. Header �les should not contain any source code. They are used purely
to store function prototypes, common #de�ne constants, and any other information you wish to export from
the C �le that the header �le belongs to.

A header can be accessed by

#include <header>

Here are some headers of Turbo C library
stdio.h Provides functions for performing input and output.
stdlib.h De�nes several general operation functions and macros.
conio.h Declares several useful library functions for performing "console input and output" from a

program.
math.h De�nes several mathematic functions.
string.h Provides many functions useful for manipulating strings (character arrays).
io.h De�nes the �le handle and low-level input and output functions
graphics.h Includes graphics functions

2.1.3.10 Statements

A statement speci�es one or more action to be perform during the execution of a program.
C requires a semicolon at the end of every statement.

2.1.3.11 Comments

Comments are marked by symbol �/*� and �*/�. C also use // to mark the start of a comment and the end
of a line to indicate the end of a comment.

Example 2.1

1. The Hello program written using the first commenting style of C

/* A simple program to demonstrate

C style comments

The following line is essential

in the C version of the hello HUT program

*/

#include <stdio.h>
main()

{

printf /* just print */ ("Hello HUT\n");

}

The Hello program written using the second commenting style of C

// A simple program to demonstrate

// C style comments

//

// The following line is essential

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

75

// in the C version of the hello HUT program

#include <stdio.h>
main()

{

printf("Hello HUT\n"); //print the string and then go to a new line

}

By the �rst way, a program may have a multi-line comments and comments in the middle of a line of
code.However, you shouldn't mix the two style in the same program.

2.1.4 C program structure

A C program basically has the following form:

• Preprocessor Commands : Declare standard libraries used inside the program
• Type de�nitions : De�ne new data types used inside the program
• Function prototypes : Declare function types and variables passed to function.
• Variables : State the names and data types of global variables
• Functions: Include the main function(required) and the functions that their prototypes were announced

above.

Figure 2.7

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

76 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.2 Data Types and Expressions2

2.2.1 Standard Data Types

The type of a variable determines how much space it occupies in storage and how the bit pattern stored is
interpreted. Standard data types in C are listed in the following table:

Table of Variable types

Variable Type Keyword Range Storage in Bytes

Character char -127 to 127 1

Unsigned character unsigned char 0 to 255 1

(Signed) integer int -32,768 to 32,767 2

Unsigned integer unsigned int 0 to 65,535 2

Short integer short -32,768 to 32,767 2

Unsigned short integer unsigned short 0 to 65,535 2

Long integer long -2,147,483,648 to
2,147,483,647

4

Unsigned long integerunsigned long 0 to 4,294,967,295 4

Single precision �oating
point

�oat 1.2E-38 to 3.4E38, ap-
prox. range precision =
7 digits.

4

Double precision �oat-
ing point

double 2.2E-308 to 1.8E308, ap-
prox. range precision =
19 digits.

8

Table 2.6

2.2.1.1 Declaration and Usage of Variables and Constants

Variables
A variable is an object of a speci�ed type whose value can be changed. In programming languages, a

variable is allocated a storage location that can contain data that can be modi�ed during program execution.
Each variable has a name that uniquely identi�es it within its level of scope.

In C, a variable must be declared before use, although certain declarations can be made implicitly by
content. Variables can be declared at the start of any block of code, but most are found at the start of each
function. Most local variables are created when the function is called, and are destroyed on return from that
function.

A declaration begins with the type, followed by the name of one or more variables. Syntax of declare
statement is described as:

data_type list_of_variables;

A list of variables includes one or many variable names separated by commas.

Example 2.2
Single declarations

2This content is available online at <http://cnx.org/content/m27741/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

77

int age; //integer variable

float amountOfMoney;//float variable

char initial;// character variable

Multiple declarations:

int age, houseNumber, quantity;

float distance, rateOfDiscount;

char firstInitial, secondInitial;

Variables can also be initialized when they are declared, this is done by adding an equals sign and the
required value after the declaration.

Example 2.3

int high = 250; //Maximum Temperature

int low = -40; //Minimum Temperature

int results[20]; //Series of temperature readings

Constants
A constant is an object whose value cannot be changed. There are two method to de�ne constant in C:

• By #de�ne statement. Syntax of that statement is:

#define constant_name value

Example 2.4

#define MAX_SALARY_LEVEL 15 //An integer constant

#define DEP_NAME ``Computer Science''

// A string constant

• By using const keyword

const data_type variable_name = value;

Example 2.5

const double e = 2.71828182845905;

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

78 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.2.1.2 Functions printf, scanf

Usually i/o, input and output, form the most important part of any program. To do anything useful your
program needs to be able to accept input data and report back your results. In C, the standard library
(stdio.h) provides routines for input and output. The standard library has functions for i/o that handle
input, output, and character and string manipulation. Standard input is usually means input using the
keyboard. Standard output is usually means output onto the monitor.

• Input by using the scanf() function
• Output by using the printf() function

To use printf and scanf functions, it is required to declare the header <stdio.h>
The printf() function
The standard library function printf is used for formatted output. It makes the user input a string and

an optional list of variables or strings to output. The variables and strings are output according to the
speci�cations in the printf() function. Here is the general syntax of printf .

printf(``[string]''[,list of arguments]);

The list of arguments allow expressions, separated by commas.
The string is all-important because it speci�es the type of each variable in the list and how you want it

printed. The string is usually called the control string or the format string. The way that this works is that
printf scans the string from left to right and prints on the screen any characters it encounters - except when
it reaches a % character.

The % character is a signal that what follows it is a speci�cation for how the next variable in the list of
variables should be printed. printf uses this information to convert and format the value that was passed
to the function by the variable and then moves on to process the rest of the control string and anymore
variables it might specify.

For Example

printf("Hello World");

only has a control string and, as this contains no % characters it results in Hello World being displayed
and doesn't need to display any variable values. The speci�er %d means convert the next value to a signed
decimal integer and so:

printf("Total = %d",total);

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

79

will print Total = and then the value passed by total as a decimal integer.
The % Format Speci�ers
The % speci�ers that you can use are:

Usual variable type Display

%c char single character

%d (%i) int signed integer

%e (%E) �oat or double exponential format

%f �oat or double signed decimal

%g (%G) �oat or double use %f or %e as required

%o int unsigned octal value

%s array of char sequence of characters

%u int unsigned decimal

%x (%X) int unsigned hex value

Table 2.7

Formatting Your Output
The type conversion speci�er only does what you ask of it - it convert a given bit pattern into a sequence

of characters that a human can read. If you want to format the characters then you need to know a little
more about the printf function's control string.

Each speci�er can be preceded by a modi�er which determines how the value will be printed. The most
general modi�er is of the form:

flag width.precision

The �ag can be any of

�ag meaning

- left justify

+ always display sign

space display space if there is no sign

0 pad with leading zeros

use alternate form of speci�er

Table 2.8

The width speci�es the number of characters used in total to display the value and precision indicates
the number of characters used after the decimal point.

For example,
%10.3f will display the �oat using ten characters with three digits after the decimal point. Notice that

the ten characters includes the decimal point, and a - sign if there is one. If the value needs more space than
the width speci�es then the additional space is used - width speci�es the smallest space that will be used to
display the value.

%-10d will display an int left justi�ed in a ten character space.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

80 CHAPTER 2. THE C PROGRAMMING LANGUAGES

The speci�er %+5d will display an int using the next �ve character locations and will add a + or - sign
to the value.

Strings will be discussed later but for now remember: if you print a string using the %s speci�er then all
of the characters stored in the array up to the �rst null will be printed. If you use a width speci�er then the
string will be right justi�ed within the space. If you include a precision speci�er then only that number of
characters will be printed.

For Example

printf("%s,Hello")

will print Hello,

printf("%25s ,Hello")

will print 25 characters with Hello right justi�ed
Also notice that it is �ne to pass a constant value to printf as in printf("%s,Hello").
Finally there are the control codes:

\b backspace

\f formfeed

\n new line

\r carriage return

\t horizontal tab

\' single quote

\0 null

Table 2.9

If you include any of these in the control string then the corresponding ASCII control code is sent to the
screen, or output device, which should produce the e�ect listed. In most cases you only need to remember
\n for new line.

The scanf() function
The scanf function works in much the same way as the printf. That is it has the general form:

scanf(``control string'',variable,variable,...)

In this case the control string speci�es how strings of characters, usually typed on the keyboard, should be
converted into values and stored in the listed variables. However there are a number of important di�erences
as well as similarities between scanf and printf.

The most obvious is that scanf has to change the values stored in the parts of computers memory that
is associated with parameters (variables).

To understand this fully you will have to wait until we have covered functions in more detail. But, just
for now, bare with us when we say to do this the scanf function has to have the addresses of the variables
rather than just their values. This means that simple variables have to be passed with a preceding &.

The second di�erence is that the control string has some extra items to cope with the problems of reading
data in. However, all of the conversion speci�ers listed in connection with printf can be used with scanf.

The rule is that scanf processes the control string from left to right and each time it reaches a speci�er
it tries to interpret what has been typed as a value. If you input multiple values then these are assumed to
be separated by white space - i.e. spaces, newline or tabs. This means you can type:

3 4 5
or

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

81

3
4
5
and it doesn't matter how many spaces are included between items. For Example

scanf("%d %d",&i,&j);

will read in two integer values into i and j. The integer values can be typed on the same line or on di�erent
lines as long as there is at least one white space character between them.

The only exception to this rule is the %c speci�er which always reads in the next character typed no
matter what it is. You can also use a width modi�er in scanf. In this case its e�ect is to limit the number
of characters accepted to the width.

For Example

scanf("%l0d",&i)

would use at most the �rst ten digits typed as the new value for i.
Here is an example to demonstrate the usage of printf and scanf functions

#include <conio.h>
#include <stdio.h>
void main()

{

// variable declaration

int a;

float x;

char ch;

char* str;

// Enter data

printf(``Input an integer'');

scanf(``%d'',&a);

printf(``\n Input a real number'');

scanf(``%f'',&x);

printf(``\n Input a character'');

fflush(stdin); scanf(``%c'',&ch);

printf(``\n Input a string'');

fflush(stdin); scanf(``%s'',str);

// Output the data

printf(``\n Your data'');

printf(``\n Integer: %d'',a);

printf(``\n Float : %.2f'',x);

printf(``\n Char: %c:,ch);

printf(``\n String : %s'',str);

}

(Function �ush are used to avoid stopping the reading process when meet one or more spaces)
There is one main problem with scanf function which can make it unreliable in certain cases. The reason

being is that scanf tends to ignore white spaces, i.e. the space character. If you require your input to contain
spaces this can cause a problem.

Scanf will skip over white space such as blanks, tabs and new lines in the input stream. The exception
is when trying to read single characters with the conversion speci�ers %c. In this case, white space is read
in. So, it is more di�cult to use scanf for single characters. An alternate technique, using getchar, will be
described later.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

82 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.2.1.3 Other Input and Output Functions

getch
The computer asks the user press a key. This key does not appear on screen. The syntax is:

getch();

getch() is used to terminate a program when the user press a key.
gets
gets reads a line of input into a character array. The syntax is:

gets(name_of_string);

puts
puts writes a line of output to standard output. The syntax is:

puts(name of string);

It terminates the line with a new line, '\n'. It will return EOF is an error occurred. It will return a positive
number on success.

For using the statements mentioned above, you must declare the library <conio.h>.

2.2.2 Expressions

2.2.2.1 Operators

C contains the following operator groups.

• Arithmetic
• Assignment
• Logical/relational
• Bitwise

2.2.2.2 Arithmetic Operators

The arithmetic operators are +, -, /, * and the modulus operator %. Integer division truncates any fractional
part. The expression x%y produces the remainder when x is divided by y, and thus is zero when y divide x
exactly.The % operator cannot be applied to a �oat or double.

The binary + and � operators have the same precedence, which is lower than the precedence of *, / and
%, which is turn lower than unary + and - . Arithmetic operators associate left to right.

Operator Meaning Data type of the
operands

Examples

- opposite integer, �oat

int a, b;

-12; -a; -25.6;

continued on next page

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

83

+ addition integer, �oat

float x, y;

5 + 8; a + x;

3.6 + 2.9;

- subtraction integer, �oat

3 -- 1.6; a -- 5;

* multiplication integer, �oat

a * b; b * y;

2.6 * 1.7;

/ division integer, �oat

10.0/3.0;

(= 3.33. . .)
10/3.0; (= 3.33. . .)
10.0/3; (= 3.33. . .)

/ integer division integer

10/3; (= 3)

% modulus integer

10%3; (=1)

Table 2.10

2.2.2.3 Assignment Operators

These all perform an arithmetic operation on the lvalue and assign the result to the lvalue. So what does
this mean in English? Here is an Example

counter = counter + 1;

can be reduced to

counter += 1;

Here is the full set.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

84 CHAPTER 2. THE C PROGRAMMING LANGUAGES

=

*= Multyply

/= Divide

%= Modulus

+= Add

-= Subtract

�= Left Shift

�= Right Shift

&= Bitwise AND

^= Bitwise Exclusive OR (XOR)

|= Bitwise Ixclusive OR

Table 2.11

if expr1 and expr2 are expressions then
expr1 op= expr2 is equivalent to expr1 = expr1 op expr2

2.2.2.4 Logical and Relational Operators

Relational operators

Operators Meaning Examples

> greater than

2 > 3 (is 0)

6 > 4 (is 1)

a > b

>= greater than or equal to

6 >= 4 (is 1)

x >= a

< less than

5 < 3 (is 0),

<= less than or equal to

5 <= 5 (is 1)

2 <= 9 (is 1)

continued on next page

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

85

== equal to

3 == 4 (is 0)

a == b

!= not equal to

5 != 6 (is 1)

6 != 6 (is 0)

Table 2.12

Logical operators

Operators Meaning Data types of the
operands

Examples

&& logical and 2 logic expressions

3<5 && 4<6 (is 1)

2<1 && 2<3 (is 0)

a > b && c < d

|| logical or 2 logic expressions

6 || 0 (is 1)

3<2 || 3<3 (is 1)

x >= a || x == 0

! logical not 1 logic expression

!3 (is 0)

!(2>5) (is 1)

Table 2.13

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

86 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.2.2.5 Bitwise Operators

Operators Meaning Data types of the
operands

Examples

& Binary AND 2 binary numbers

0 & 0 (is 0)

0 & 1 (is 0)

1 & 0 (is 0)

1 & 1 (is 1)

101 & 110 (is 100)

| Binary OR 2 binary numbers

0 | 0 (is 0)

0 | 1 (is 0)

1 | 0 (is 0)

1 | 1 (is 1)

101 | 110 (is 111)

^ Binary XOR 2 binary numbers

0 ^ 0 (is 0)

0 ^1 (is 1)

1 ^ 0 (is 1)

1 ^ 1 (is 0)

101 ^ 110 (is 011)

� Shift left 1 binary number

a � n (is a*2n)

101 � 2 (is 10100)

� Shift right 1 binary number

a � n (is a/2n)

101 � 2 (is 1)

continued on next page

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

87

∼ One's complement 1 binary number

∼ 0 (is 1)

∼ 1 (is 0)

∼ 110 (is 001)

Table 2.14

2.2.2.6 Increment and Decrement Operators

Incrementing, decrementing and doing calculations on a variable is a very common programming task and
C has quicker ways of writing the code. The code is rather cyptic in appearance.

The increment operator ++ adds 1 to its operand while the decrement operator - -subtract 1. We have
frequently used ++ to increment variables, as in

if (c = = '\n')
++n;

The unusual aspect is that ++ and - - may be used either as pre�x operators (before the variable, as in
++n) or post�x operators (after the variable, as in n++). In both cases, the e�ect is to increment n. But
the expression ++n increments n before its value is used, while n++ increment n after its value has been
used. This mean that in a context where the value is being used, not just the e�ect, ++n and n++ are
di�erent. For example, if n is 5, then

x = n++;

sets x to 5 but

x = ++n;

sets x to 6. In both cases, n becomes 6.

note: The increment and decrement operator can only be applied to variables; an expression like
(i + j)++ is illegal.

2.2.2.7 Memory Addressing Operators

The �ve operators listed in the3 following table are used in addressing array elements and members of
structures, and in using pointers to access objects and functions.

Operator Meaning Example Result

& Address of &x Pointer to x

continued on next page

3See the �le at
<http://cnx.org/content/m27741/latest/mk:@MSITStore:C:%5CDOCUME∼1%5CComputer%5CLOCALS∼1%5CTemp%5CRar$DI00.969%5CC.in.a.Nutshell.(OReilly)-
0596006977.chm::>

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

88 CHAPTER 2. THE C PROGRAMMING LANGUAGES

* Indirection operator *p The object or function
that p points to

[] Subscripting x[y] The element with the in-
dex y in the array x (or
the element with the in-
dex x in the array y: the
[] operator works either
way)

. Structure or union
member designator

x.y The member named y in
the structure or union x

-> Structure or union
member designator by
reference

p->y The member named y in
the structure or union
that p points to

Table 2.15

2.2.2.8 Type Conversions

When an operator has operands of di�erent types, they are converted to a common type according to a small
number of rules. In general, the only automatic conversion era those that convert a narrower operand into
a wider one without loosing information, such as converting an integer into �oating point .

If there are no unsigned operands, the following informal set of rules will su�ce:
If either operand is long double, convert the other to long double.
Otherwise, if either operand is double, convert the other to double.
Otherwise if either operand is �oat, convert the other to �oat.
Otherwise convert char and short to int.
Then if either operand is long, convert the other to long.
A char is just a small integer, so chars may be freely used in arithmetic expressions

2.2.2.9 Precedence of Operators

Operators listed by type.
All operators on the same line have the same precedence. The �rst line has the highest precedence.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

89

Level Operators Associativity

1 () [] . -> ++ (post�x) � (post�x) ��>

2 ! ∼ ++ (pre�x) � (pre�x) - * & sizeof <��

3 * / % ��>

4 + - ��>

5 � � ��>

6 < <= > >= ��>

7 == != ��>

8 & ��>

9 ^ ��>

10 | ��>

11 && ��>

12 || ��>

13 ?: <��

14 = += -= <��

Table 2.16

Note:[U+F02D][U+F02D][U+F02D][U+F02D][U+F02D][U+F03E]associate left to right

2.3 The Control Flow4

The control �ow of a language specify the order in which operations are performed. Each program in-
cludes many statements. Statements are processed one after another in sequence, except where such control
statements result in jumps.

2.3.1 Statements and Blocks

An expression such as x = 0 or i++ or printf(. . . .) becomes a statement when it is followed by a semicolon,
as in

x=0;

i++;

printf(. . . .);

In the C language, the semicolon is a statement terminator.
A block also called a compound statement, or compound statement, lets you group any number of data

de�nitions, declarations, and statements into one statement. All de�nitions, declarations, and statements
enclosed within a single set of braces are treated as a single statement. You can use a block wherever a single
statement is allowed.

In blocks, declarations and de�nitions can appear anywhere, mixed in with other code. Note that there
is no semicolon after the right brace that ends a block.

Example 2.6

4This content is available online at <http://cnx.org/content/m27773/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

90 CHAPTER 2. THE C PROGRAMMING LANGUAGES

{ into I = 0; /* Declarations */

static long a;

extern long max;

++a; /* Statements */

if(a >= max)

{ . . . } /* A nested block */

. . .

}

An expression statement is an expression followed by a semicolon. The syntax is:

[expression] ;

Example 2.7

y = x; // Assignment

The expression�an assignment or function call, for example�is evaluated for its side e�ects. The type and
value of the expression are discarded.

A statement consisting only of a semicolon is called an empty statement, and does not perform any
operation. For Example

for (i = 0; str[i] != '\0'; ++i)

; // Empty statement

2.3.2 If, If else statements

The if statement has two forms:

if(expression) statement

and

if(expression) statement1

else statement2

In the �rst form, if (and only if) the expression is non-zero, the statement is executed. If the expression
is zero, the statement is ignored. Remember that the statement can be compound; that is the way to put
several statements under the control of a single if.

The second form is like the �rst except that if the statement shown as statement1 is selected then
statement2 will not be, and vice versa.

Here are the �owcharts of the two forms of if statement

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

91

Figure 2.8

The form involving else works the same way, so we can also write this.

if(expression)

if(expression)

statement

else

statement

this is now ambiguous. It is not clear, except as indicated by the indentation, which of the ifs is responsible
for the else. If we follow the rules that the previous example suggests, then the second if is followed by a
statement, and is therefore itself a statement, so the else belongs to the �rst if.

That is not the way that C views it. The rule is that an else belongs to the �rst if above that hasn't
already got an else. In the example we're discussing, the else goes with the second if.

To prevent any unwanted association between an else and an if just above it, the if can be hidden away
by using a compound statement, here it is.

if(expression){

if(expression)

statement

}else

statement

if(expression){

if(expression){

if(expression){

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

92 CHAPTER 2. THE C PROGRAMMING LANGUAGES

statement

}

}else{

statement

}

Example

Example 2.8

#include <conio.h>
#include <stdio.h>
void main()

{

// variable declaration

float a, b;

float max;

printf(`` Enter the values of a and b: ``);

scanf(``%f %f'',&a,&b);

if(a<b) //Assign the greater of x and y to the variable max

max = b;

else

max = a;

printf(``\n The greater of two numbers %.0f and %.0f is %.0f ``,a,b,max);

getch();

}

Figure 2.9

2.3.3 The Switch Statement

It is used to select one of a number of alternative actions depending on the value of an expression, and nearly
always makes use of another of the lesser statements: the break. It looks like this.

switch (expression){

case const1: statements

case const2: statements

. . . .

default: statements

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

93

The �owchart of switch statement is shown below:

Figure 2.10

The expression is evaluated and its value is compared with all of the const etc. expressions, which must
all evaluate to di�erent constant values (strictly they are integral constant expressions). If any of them
has the same value as the expression then the statement following the case label is selected for execution.
If the default is present, it will be selected when there is no matching value found. If there is no default
and no matching value, the entire switch statement will do nothing and execution will continue at the next
statement.

Example 2.9

OK=1;

switch (OP)

{

case `+':

z=x+y;

break;

case `-':

z=x-y;

break;

case `*':

z=x*y;

break;

case '/':

if (y!=0)

z=x/y;

else OK=0;

default :

OK=0;

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

94 CHAPTER 2. THE C PROGRAMMING LANGUAGES

• The switch requires an integer-compatible value. This value may be a constant, variable, function call,
or expression. The switch statement does not work with �oating � point data types.

• The value after each case label must be a constant.
• C++ does not support case label with ranges of values. Instead, each value must appear in a separate

case label.
• You need to use a break statement after each set of executable statements. The break statement causes

program execution to resume after the end of the current switch statement. If you do not use the break
statement, the program execution resumes at subsequent case labels.

• The default clause is a catch-all clause.
• The set of statements in each case or grouped case labels need not be enclosed in open and close braces.

The following program writes out the day of the week depending on the value of an integer variable day. It
assumes that day 1 is Sunday.

#include <stdio.h>
#include <conio.h>
void main()

{int day;

printf(``Enter the value of a weekday'');

scanf(``%d'',&day);

switch (day)

{

case 1 : printf("Sunday");

break;

case 2 : printf("Monday");

break;

case 3 : printf("Tuesday");

break;

case 4 : printf("Wednesday");

break;

case 5 : printf("Thursday");

break;

case 6 : printf("Friday");

break;

case 7 : printf("Saturday");

break;

default : printf("Not an allowable day number");

break;

}

getch();

}

If it has already been ensured that day takes a value between 1 and 7 then the default case may be missed
out. It is allowable to associate several case labels with one statement. For example if the above example is
amended to write out whether day is a weekday or is part of the weekend:

switch (day)

{

case 1 :

case 7 : printf("This is a weekend day");

break;

case 2 :

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

95

case 3 :

case 4 :

case 5 :

case 6 : printf("This is a weekday");

break;

default : printf("Not a legal day");

break;

}

2.3.4 Loops : While and Do While, For

2.3.4.1 The while statement

The syntax of while statement is simple:

while(expression)

statement

Figure 2.11

The statement is only executed if the expression is non-zero. After every execution of the statement, the
expression is evaluated again and the process repeats if it is non-zero. What could be plainer than that?
The only point to watch out for is that the statement may never be executed, and that if nothing in the
statement a�ects the value of the expression then the while will either do nothing or loop for ever, depending
on the initial value of the expression.

Example 2.10

#include <stdio.h>
#include <stdlib.h>

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

96 CHAPTER 2. THE C PROGRAMMING LANGUAGES

main(){

int i;

/* initialize */

i = 0;

/* check */

while(i <= 10){

printf("%d\n", i);

/* update */

i++;

}

}

2.3.4.2 The do statement

It is occasionally desirable to guarantee at least one execution of the statement following the while, so an
alternative form exists known as the do statement. It looks like this:

do

statement

while(expression);

Figure 2.12

and you should pay close attention to that semicolon�it is not optional! The e�ect is that the statement
part is executed before the controlling expression is evaluated, so this guarantees at least one trip around

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

97

the loop. It was an unfortunate decision to use the keyword while for both purposes, but it doesn't seem to
cause too many problems in practice.

2.3.4.3 The for statement

A very common feature in programs is loops that are controlled by variables used as a counter. The counter
doesn't always have to count consecutive values, but the usual arrangement is for it to be initialized outside
the loop, checked every time around the loop to see when to �nish and updated each time around the loop.
There are three important places, then, where the loop control is concentrated: initialize, check and update.
This example shows them.

As you will have noticed, the initialization and check parts of the loop are close together and their location
is obvious because of the presence of the while keyword. What is harder to spot is the place where the update
occurs, especially if the value of the controlling variable is used within the loop. In that case, which is by far
the most common, the update has to be at the very end of the loop: far away from the initialize and check.
Readability su�ers because it is hard to work out how the loop is going to perform unless you read the whole
body of the loop carefully. What is needed is some way of bringing the initialize, check and update parts
into one place so that they can be read quickly and conveniently. That is exactly what the for statement is
designed to do. Here it is.

for (expression1; expression2; expression3) statement

Figure 2.13

The �rst expression (expression1) is the initialize part; nearly always an assignment expression which is used
to initialize the control variable. After the initialization, the check expression (expression2) is evaluated: if it
is non-zero, the statement is executed, followed by evaluation of the update expression (expression3) which
generally increments the control variable, then the sequence restarts at the check. The loop terminates as
soon as the check evaluates to zero.

There are two important things to realize about that last description:
one, that each of the three parts of the for statement between the parentheses are just expressions;

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

98 CHAPTER 2. THE C PROGRAMMING LANGUAGES

two, that the description has carefully explained what they are intended to be used for without proscribing
alternative uses�that was done deliberately. You can use the expressions to do whatever you like, but at
the expense of readability if they aren't used for their intended purpose.

Here is a program that does the same thing twice, the �rst time using a while loop, the second time with
a for. The use of the increment operator is exactly the sort of use that you will see in everyday practice.

Example 2.11

#include <stdio.h>
#include <stdlib.h>

void main(){

int i;

/* the same done using ``for'' */

for(i = 0; i <= 10; i++){

printf("%d\n", i);

}

}

There isn't any di�erence between the two, except that in this case the for loop is more convenient and
maintainable than the while statement. You should always use the for when it's appropriate; when a loop
is being controlled by some sort of counter. The while is more at home when an indeterminate number of
cycles of the loop are part of the problem.

Any of the initialize, check and update expressions in the for statement can be omitted, although the
semicolons must stay. This can happen if the counter is already initialized, or gets updated in the body
of the loop. If the check expression is omitted, it is assumed to result in a `true' value and the loop never
terminates. A common way of writing never-ending loops is either

for(;;)

or

while(1)

and both can be seen in existing programs.

2.3.5 Loop Flow Control

The control of �ow statements that we've just seen are quite adequate to write programs of any degree of
complexity. They lie at the core of C and even a quick reading of everyday C programs will illustrate their
importance, both in the provision of essential functionality and in the structure that they emphasize. The
remaining statements are used to give programmers �ner control or to make it easier to deal with exceptional
conditions. Only the switch statement is enough of a heavyweight to need no justi�cation for its use; yes, it
can be replaced with lots of ifs, but it adds a lot of readability. The others, break, continue and goto, should
be treated like the spices in a delicate sauce. Used carefully they can turn something commonplace into a
treat, but a heavy hand will drown the �avor of everything else.

2.3.5.1 The break statement

This is a simple statement. It only makes sense if it occurs in the body of a switch, do, while or for
statement. When it is executed the control of �ow jumps to the statement immediately following the body
of the statement containing the break. Its use is widespread in switch statements, where it is more or less
essential to get the control that most people want.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

99

The use of the break within loops is of dubious legitimacy. It has its moments, but is really only justi�able
when exceptional circumstances have happened and the loop has to be abandoned. It would be nice if more
than one loop could be abandoned with a single break but that isn't how it works. Here is an example

#include <stdio.h>
#include <stdlib.h>
main(){

int i;

for(i = 0; i < 10000; i++){

if(getchar() == 's')

break;

printf("%d\n", i);

}

}

It reads a single character from the program's input before printing the next in a sequence of numbers. If
an `s' is typed, the break causes an exit from the loop.

If you want to exit from more than one level of loop, the break is the wrong thing to use. The goto is
the only easy way, but since it can't be mentioned in polite company, we'll leave it till last.

2.3.5.2 The continue statement

This statement has only a limited number of uses. The rules for its use are the same as for break, with the
exception that it doesn't apply to switch statements. Executing a continue starts the next iteration of the
smallest enclosing do, while or for statement immediately. The use of continue is largely restricted to the
top of loops, where a decision has to be made whether or not to execute the rest of the body of the loop. In
this example it ensures that division by zero (which gives unde�ned behavior) doesn't happen

#include <stdio.h>
#include <stdlib.h>
main(){

int i;

for(i = -10; i < 10; i++){

if(i == 0)

continue;

printf("%f\n", 15.0/i);

/*

* Lots of other statements

*/

}

}

Of course the continue can be used in other parts of a loop, too, where it may occasionally help to simplify
the logic of the code and improve readability. It deserves to be used sparingly.

Do remember that continue has no special meaning to a switch statement, where break does have. Inside
a switch, continue is only valid if there is a loop that encloses the switch, in which case the next iteration of
the loop will be started.

There is an important di�erence between loops written with while and for. In a while, a continue will go
immediately to the test of the controlling expression. The same thing in a for will do two things: �rst the
update expression is evaluated, then the controlling expression is evaluated.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

100 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.3.6 Goto and Labels

Everybody knows that the goto statement is a `bad thing'. Used without care it is a great way of making
programs hard to follow and of obscuring any structure in their �ow. Dijkstra wrote a famous paper in 1968
called `Goto Statement Considered Harmful', which everybody refers to and almost nobody has read.

What's especially annoying is that there are times when it is the most appropriate thing to use in the
circumstances! In C, it is used to escape from multiple nested loops, or to go to an error handling exit at
the end of a function. You will need a label when you use a goto; this example shows both.

goto L1;

/* whatever you like here */

L1: /* anything else */

A label is an identi�er followed by a colon. Labels have their own `name space' so they can't clash with
the names of variables or functions. The name space only exists for the function containing the label, so
label names can be re-used in di�erent functions. The label can be used before it is declared, too, simply by
mentioning it in a goto statement.

Labels must be part of a full statement, even if it's an empty one. This usually only matters when you're
trying to put a label at the end of a compound statement�like this.

label_at_end: ; /* empty statement */

}

The goto works in an obvious way, jumping to the labeled statements. Because the name of the label is only
visible inside its own function, you can't jump from one function to another one.

It's hard to give rigid rules about the use of gotos, but, as with the do, continue and the break (except
in switch statements), over-use should be avoided. Think carefully every time you feel like using one, and
convince yourself that the structure of the program demands it. More than one goto every 3�5 functions is
a symptom that should be viewed with deep suspicion.

2.4 Pointers and Arrays5

From the beginning, we only show how to access or change directly the values of variables through their
names. However, the C language provides the developers an e�ective method to access variables - pointer.

A pointer is a variable that contains the address of a variable. Pointers are much used in C, partly
because they are sometimes the only way to express a computation, and partly because they usually lead to
more compact and e�cient code than can be obtained in other ways. Pointers and arrays are closely related;
this Unit also explores this relationship and shows how to exploit it.

2.4.1 Pointers and Addresses

Let us begin with a simpli�ed picture of how memory is organized. A typical machine has an array of
consecutively numbered or addressed memory cells that may be manipulated individually or in contiguous
groups. One common situation is that any byte can be a char, a pair of one-byte cells can be treated as a
short integer, and four adjacent bytes form a long.

Any variable in a program is stored at a speci�c area in memory. If you declare a variable, the compiler
will allocate this variable to some consecutive memory cells to hold the value of the variable. The address
of the variable is the address of the �rst memory cell.

One variable always has two properties:

• The address of the variable
• The value of the variable.

5This content is available online at <http://cnx.org/content/m27769/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

101

Consider the following Example

int i, j;

i = 3;

j = i;

Type of these two variables is integer so they are stored in 2-byte memory area. Suppose that the compiler
allocates i at the FFEC address in memory and j in FFEE, we have:

Variable Address Value

i FFEC 3

j FFEE 3

Table 2.17

Two di�erent variables have di�erent addresses. The i = j assignment a�ects only on the value of variables,
that means the content of the memory area for j will be copied to the content of the memory area for i.

2.4.1.1 Pointers

A pointer is a group of cells (often two or four) that can hold an address. So if c is a char and p is a pointer
that points to it, we could represent the situation this way:

Figure 2.14

2.4.1.1.1 Pointer declaration

If you declare a variable, its name is a direct reference to its value. If you have a pointer to a variable or any
other object in memory, you have an indirect reference to its value. A pointer variable stores the address of
another object or a function. To start out, the declaration of a pointer to an object that is not an array has
the following syntax:

type * Name [= initializer];

In declarations, the asterisk (*) means "pointer to". The identi�er name is declared as an object with the
type *, or pointer to type. * is the indirection or dereferencing operator; when applied to a pointer, it
accesses the object the pointer points to.

Here is a simple Example

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

102 CHAPTER 2. THE C PROGRAMMING LANGUAGES

int *iPtr; // Declare iPtr as a pointer to int.

double *realptr; // pointer to a double

char *astring; // pointer to a character

The type int is the type of object that the pointer iPtr can point to.
To make a pointer refer to a certain object, assign it the address of the object.
For example, if iVar is an int variable, then the following assignment makes iPtr point to the variable

iVar:

iPtr = &iVar; // Let iPtr point to the variable iVar.

In a pointer declaration, the asterisk (*) is part of an individual declarator. We can thus de�ne and initialize
the variables iVar and iPtr in one declaration, as follows:

int iVar = 77, *iPtr = &iVar; // Define an int variable and a

// pointer to it.

The second of these two declarations initializes the pointer iPtr with the address of the variable iVar, so
that iPtr points to iVar. Figure 4.1. illustrates one possible arrangement of the variables iVar and iPtr in
memory. The addresses shown are purely �ctitious examples. As Figure 4.1. shows, the value stored in the
pointer iPtr is the address of the object iVar.

Figure 2.15: A pointer and another object in memory

It is often useful to output addresses for veri�cation and debugging purposes. The printf() functions
provide a format speci�er for pointers: %p. The following statement prints the address and contents of the
variable iPtr:

printf("Value of iPtr (i.e. the address of iVar): %p\n"
"Address of iPtr: %p\n", iPtr, &iPtr);

The size of a pointer in memory given by the expression sizeof(iPtr)

2.4.1.1.2 & and * operators

The unary operator & gives the address of an object, so the statement

p = &c;

assigns the address of c to the variable p, and p is said to �point to� c. The & operator only applies to
objects in memory: variables and array elements. It cannot be applied to expressions, constants, or register
variables.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

103

* is the operator that retrieves the value stored at the address held in the pointer. The indirection
operator * yields the location in memory whose address is stored in a pointer. If ptr is a pointer, then *ptr
designates the object that ptr points to. Using the indirection operator is sometimes called dereferencing
a pointer. The type of the pointer determines the type of object that is assumed to be at that location in
memory. For example, when you access a given location using an int pointer, you read or write an object of
type int.

The indirection operator * is a unary operator; that is, it has only one operand.ptr points to the variable
x. Hence the expression *ptr is equivalent to the variable x itself.

Example 2.12

double x, y, *ptr; // Two double variables and a pointer to double.

ptr = &x; // Let ptr point to x.

*ptr = 7.8; // Assign the value 7.8 to the variable x.

*ptr *= 2.5; // Multiply x by 2.5.

y = *ptr + 0.5; // Assign y the result of the addition x + 0.5.

Do not confuse the asterisk (*) in a pointer declaration with the indirection operator. The syntax of the
declaration can be seen as an illustration of how to use the pointer.

double *ptr;

As declared here, ptr has the type double * (read: "pointer to double"). Hence the expression *ptr would
have the type double.

Of course, the indirection operator * must be used with only a pointer that contains a valid address.
This usage requires careful programming! Without the assignment ptr = &x in the listing above, all of the
statements containing *ptr would be senseless dereferencing an unde�ned pointer value and might well cause
the program to crash.

2.4.1.1.3 Pointer Assignment

Since pointers are variables, they can be used without dereferencing. Pointer assignment between two
pointers makes them point to the same pointee. So the assignment iq = ip; copies the contents of ip into
iq, thus making iq point to whatever ip pointed to. It makes iq point to the same pointee as ip. Pointer
assignment does not touch the pointees. It just changes one pointer to have the same reference as another
pointer. After pointer assignment, the two pointers are said to be "sharing" the pointee.

Example Consider the following programs:

main()

{

int i = 3, j = 6;

int *p1, *p2;

p1 = &i;

p2 = &j;

*p1 = *p2;

}

and

main()

{

int i = 3, j = 6;

int *p1, *p2;

p1 = &i;

p2 = &j;

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

104 CHAPTER 2. THE C PROGRAMMING LANGUAGES

p1 = p2;

}

Suppose the values of variables before executing the last assignment are

Variable Address Value

i FFEC 3

j FFEE 6

p1 FFDA FFEC

p2 FFDC FFEE

Table 2.18

After the assignment *p1 = *p2; for the �rst program:

Variable Address Value

i FFEC 6

j FFEE 6

p1 FFDA FFEC

p2 FFDC FFEE

Table 2.19

While the assignment p1 = p2 for the second program results

Variable Address Value

i FFEC 3

j FFEE 6

p1 FFDA FFEE

p2 FFDC FFEE

Table 2.20

2.4.1.1.4 Initializing Pointers

Pointer variables with automatic storage duration start with an unde�ned value, unless their declaration
contains an explicit initializer. You can initialize a pointer with the following kinds of initializers:

• A null pointer constant.
• A pointer to the same type, or to a less quali�ed version of the same type.
• A void pointer, if the pointer being initialized is not a function pointer. Here again, the pointer being

initialized can be a pointer to a more quali�ed type.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

105

2.4.1.2 Operators on Pointers

Besides using assignments to make a pointer refer to a given object or function, you can also modify an object
pointer using arithmetic operations. When you perform pointer arithmetic, the compiler automatically
adapts the operation to the size of the objects referred to by the pointer type.

You can perform the following operations on pointers to objects:

• Adding an integer to, or subtracting an integer from, a pointer.
• Subtracting one pointer from another.
• Comparing two pointers.

If ip points to the integer x, then *ip can occur in any context where x could, so

*ip = *ip + 10;

The unary operators * and & bind more tightly than arithmetic operators, so the assignment

y = *ip + 1

takes whatever ip points at, adds 1, and assigns the result to y, while

*ip += 1

increments what ip points to, as do

++*ip

and

(*ip)++

The parentheses are necessary in this last example; without them, the expression would increment ip instead
of what it points to, because unary operators like * and ++ associate right to left.

When you subtract one pointer from another, the two pointers must have the same basic type, although
you can disregard any type. Furthermore, you may compare any pointer with a null pointer constant using
the equality operators (== and !=), and you may compare any object pointer with a pointer to void.

2.4.1.2.1 Pointer to pointer

A pointer variable is itself an object in memory, which means that a pointer can point to it. To declare a
pointer to a pointer , you must use two asterisks, as in the following Example

char c = 'A', *cPtr = &c, **cPtrPtr = &cPtr;

The expression *cPtrPtr now yields the char pointer cPtr, and the value of **cPtrPtr is the char variable c.
The diagram in Figure X illustrates these references.

2.4.1.2.2 NULL Pointers

There are times when it's necessary to have a pointer that doesn't point to anything. A null pointer is
what results when you convert a null pointer constant to a pointer type. A null pointer constant is an
integer constant expression with the value 0, or such an expression cast as the type void *.

Null pointers are implicitly converted to other pointer types as necessary for assignment operations, or
for comparisons using == or !=. Hence no cast operator is necessary in the previous example.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

106 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.4.1.2.3 void Pointers

A pointer to void, or void pointer for short, is a pointer with the type void *. As there are no objects
with the type void, the type void * is used as the all-purpose pointer type. In other words, a void pointer
can represent the address of any object but not its type. To access an object in memory, you must always
convert a void pointer into an appropriate object pointer.

2.4.2 Arrays

2.4.2.1 Basic of Arrays

An array contains objects of a given type, stored consecutively in a continuous memory block.The individual
objects are called the elements of an array. The elements' type can be any object type. No other types are
permissible: array elements may not have a function type or an incomplete type.

An array is also an object itself, and its type is derived from its elements' type. More speci�cally, an
array's type is determined by the type and number of elements in the array. If an array's elements have type
T, then the array is called an "array of T." If the elements have type int, for example, then the array's type
is "array of int." The type is an incomplete type, however, unless it also speci�es the number of elements. If
an array of int has 16 elements, then it has a complete object type, which is "array of 16 int elements."

In C, there is a strong relationship between pointers and arrays, strong enough that pointers and arrays
should be discussed simultaneously. Any operation that can be achieved by array subscripting can also be
done with pointers. The pointer version will in general be faster but, at least to the uninitiated, somewhat
harder to understand.

2.4.2.2 Declarations and Usage of Arrays

The de�nition of an array determines its name, the type of its elements, and the number of elements in the
array. The general syntax for declaring a single-dimensional array is

type name[number_of_elements];

The number of elements, between square brackets ([]), must be an integer expression whose value is greater
than zero.

For example, the declaration,

int a[10];

de�nes an array of size 10, that is, a block of 10 consecutive objects named a[0], a[1], ...,a[9].

char buffer[4*512];

de�nes an array with the name bu�er, which consists of 2,048 elements of type char.

• The lower bound of an array is set at 0. C++ does not allow you to override or alter this lower bound
• Declaring a C++ array entails specifying the number of members. The number of member is equal to

the upper bound plus one
• The valid range of indices extends between 0 and number_of_elements -1.

2.4.2.2.1 Multidimensional Arrays

A multidimensional array in C is merely an array whose elements are themselves arrays. The elements of an
n-dimensional array are (n-1)-dimensional arrays. For example, each element of a two-dimensional array is
a one-dimensional array. The elements of a one-dimensional array, of course, do not have an array type.

A multidimensional array declaration has a pair of brackets for each dimension:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

107

char screen[10][40][80]; // A three-dimensional array.

The array screen consists of the 10 elements screen[0] to screen[9]. Each of these elements is a two-dimensional
array, consisting in turn of 40 one-dimensional arrays of 80 characters each. All in all, the array screen
contains 32,000 elements with the type char.

Two-dimensional arrays are also called matrices. Because they are so frequently used, they merit a closer
look. It is often helpful to think of the elements of a matrix as being arranged in rows and columns. Thus
the matrix mat in the following de�nition has three rows and �ve columns:

float mat[3][5];

The three elements mat[0], mat[1], and mat[2] are the rows of the matrix mat. Each of these rows is an
array of �ve �oat elements. Thus the matrix contains a total of 3 x 5 = 15 �oat elements, as the following
diagram illustrates:

0 1 2 3 4

mat[0] 0.0 0.1 0.2 0.3 0.4

mat[1] 1.0 1.1 1.2 1.3 1.4

mat[2] 2.0 2.1 2.2 2.3 2.4

Table 2.21

2.4.2.2.2 Accessing Array Elements

The subscript operator [] provides an easy way to address the individual elements of an array by index.
If myArray is the name of an one dimensional array and i is an integer, then the expression myArray[i]
designates the array element with the index i. Array elements are indexed beginning with 0. Thus, if len is
the number of elements in an array, the last element of the array has the index len-1.

The following code fragment de�nes the array myArray and assigns a value to each element.

#define A_SIZE 4

long myarray[A_SIZE];

for (int i = 0; i < A_SIZE; ++i)

myarray[i] = 2 * i;

The diagram in Figure 2.16 illustrates the result of this assignment loop.

Figure 2.16: Values assigned to elements by index

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

108 CHAPTER 2. THE C PROGRAMMING LANGUAGES

To access a char element in the three-dimensional array screen, you must specify three indices. For
example, the following statement writes the character Z in a char element of the array:

screen[9][39][79] = 'Z';

2.4.2.2.3 Initializing Arrays

If you do not explicitly initialize an array variable, the usual rules apply: if the array has automatic storage
duration, then its elements have unde�ned values. Otherwise, all elements are initialized by default to the
value 0.

• You cannot include an initialization in the de�nition of a variable-length array.
• If the array has static storage duration, then the array initializers must be constant expressions. If the

array has automatic storage duration, then you can use variables in its initializers.
• You may omit the length of the array in its de�nition if you supply an initialization list. The array's

length is then determined by the index of the last array element for which the list contains an initializer.
For example, the de�nition of the array a in the previous example is equivalent to this:

int a[] = { 1, 2, 4, 8 }; // An array with four elements.

• If the de�nition of an array contains both a length speci�cation and an initialization list, then the
length is that speci�ed by the expression between the square brackets. Any elements for which there
is no initializer in the list are initialized to zero (or NULL, for pointers). If the list contains more
initializers than the array has elements, the super�uous initializers are simply ignored.

• A super�uous comma after the last initializer is also ignored.
• As a result of these rules, all of the following de�nitions are equivalent:

int a[4] = {1, 2};

int a[] = {1, 2, 0, 0};

int a[] = {1, 2, 0, 0, };

int a[4] = {1, 2, 0, 0, 5};

2.4.2.3 Operations on arrays

2.4.2.3.1 Read the elements of a 1-dimensional array:

float a[10]; // declare a float array of size 10

int i;

// read the second element of the array : a[1]

scanf(``%f'',&a[1]);

// Assign an expression to the third element of the array

a[2] = a[1] + 5;

To read the value for each element of an array, you should use for statement. For example,

int b[10];

int i;

// Read the value for each element of the array

for(i = 0; i < 10; i++)

{

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

109

printf(``\n Enter the value of b[%d]'', i);

scanf(``%d'',&b[i]);

}

In case you do not now the exact number of elements, declare the maximum number of elements and use a
variable to store the actual size of the array

int a[100]; // Declare the array with the number of elements not greater than 100

int n; // n is the actual size of the array

int i;

printf(``\n Enter the number of elements: ``);

scanf(``%d'',&n);

for(i = 0; i < n; i++)

{

printf("\n a[%d] = ", i);

scanf("%d",&a[i]);

}

C allow you to associate initializers with speci�c elements . To specify a certain element to initialize, place
its index in square brackets. In other words, the general form of an element designator for array elements is:

int a[4] = {4, 9, 22, 16};

float b[3] = {40.5, 20.1, 100};

char c[5] = {`h', `e', `l', `l', `o'};

The �rst statement is equivalent to four assign statements

a[0] = 4; a[1] = 9; a[2] = 22; a[3] = 16;

2.4.2.3.2 Printing array elements

printf function are used to print the element of an array. In the following example, we print the element of
array a in di�erent ways

#include <stdio.h>
#include <conio.h>
void main()

{

int a[5];

int i, k;

// Read the elements of the array

for(i = 0; i < 5; i++)

{

printf(``\n a[%d] = ``, i);

scanf(``%d'', &a[i]);

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

110 CHAPTER 2. THE C PROGRAMMING LANGUAGES

}

// print the value of element a[3]

printf(``\n a[3] = %d'', a[3]);

// Display all the elements of array a, each element in a line.

for(i = 0; i < 5; i++)

printf(``\n%d'', a[i]);

// Display all the elements of array a in a line

printf(``\n''); // change to a new line

for(i = 0; i < 5; i++)

printf(``%d ``, a[i]);

// Display all the elements of array a, k elements in a line

printf(``\n Enter the value of k = ``);

scanf(``%d'',&k);

for(i = 0; i < 5; i++)

{

printf(``%d ``,a[i]);

if((i+1)%k == 0) // change to a new line after printing k

//elements

printf(``\n'');
}

getch();

}

here is the sample session with the above program

a[0] = 6

a[1] = 14

a[2] = 23

a[3] = 37

a[4] = 9

a[3] = 37

6

14

23

37

9

6 14 23 37 9

Input the value of k = 2

6 14

23 37

9

2.4.2.3.3 Find the maximum value stored in the array.

The purpose of this function is to �nd the maximum value stored in the array

• Set up a trial minimum value. The function begins by declaring a variable named min and initializing
that variable with a trial minimum value � value of the �rst element .

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

111

• Then the function uses a while loop to:

· Fetch the value stored in each element in the array
· Compare each of those values with the current value stored in the variable named max
· Possibly replace if the value fetched from an element is algebraically greater than the current
value stored in max:

· The value fetched from the element is stored in the variable named max
· Replacing the value that was previously stored in the variable named max by the new value from
the element.

• When all of the array elements have been examined and processed in this manner, the variable named
max will contain the maximum value of all the values stored in the array.

int a[100];

int i, n;

int max;

printf("\n Enter the size of the array: ");

scanf("%d",&n);

// Read the number of elements of the array

for(i = 0; i < n; i++)

{

printf("\n a[%d] = ",i);

scanf("%d",&a[i]);

}

// Find the maximum element

max = a[0]; // max is initialized by a[0]

// compare max to other elements

for(i = 1; i < n; i++)

if(max < a[i]) //meet an element greater than max

max = a[i]; // replace max by the new value from the elements.

printf("\n The maximum element of the array is: %d", max);

2.4.2.3.4 Searching

The simplest type of searching process is the sequential search. In the sequential search, each element of the
array is compared to the key, in the order it appears in the array, until the �rst element matching the key is
found. If you are looking for an element that is near the front of the array, the sequential search will �nd it
quickly. The more data that must be searched, the longer it will take to �nd the data that matches the key
using this process.

here is the sample session with the above program

#include <stdio.h>
#include <conio.h>
void main()

{

int m[100], idx[100];

int n; // n is the actual size of the array

int i, k, test;

clrscr(); // clear screen

// Read array m

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

112 CHAPTER 2. THE C PROGRAMMING LANGUAGES

// Read the actual size of m

printf(`` Enter the number of elements

scanf(``%d'',&n);

// Read array's elements

for(i = 0;i<n;i++)

{

int temp;

printf(``\n Enter the value of m[%d] = ``,i);

scanf(``%d'',&temp);

m[i] = temp;

}

// Read the searching key k

printf(``\n Enter the value you want to search : ``);

scanf(``%d'',&k);

// Begin searching

test = 0;

// Scan all the elements

for(i = 0;i<n;i++)

if(m[i] = = k)//Compare the current element with the

//searching key k

{

// save the index of the current element

idx[test] = i;

test ++;

}

// Conclusion

if(test > 0)

{

printf(``\n there are %d elements which has the value of %d'',test,k);

printf(``\n Indexes of those elements: ``);

for(i = 0;i < test;i++)

printf(``%3d'',idx[i]);

}

else

printf(``\n No element has the value %d'',k);

getch(); // Wait until the user press any key

}

2.4.2.3.5 Sorting

Selection sort is a sorting algorithm, speci�cally an in-place comparison sort. Selection sort is noted for its
simplicity, and also has performance advantages over more complicated algorithms in certain situations. It
works as follows:

• Find the minimum value in the list
• Swap it with the value in the �rst position
• Repeat the steps above for remainder of the list (starting at the second position)

E�ectively, we divide the list into two parts: the sublist of items already sorted, which we build up from
left to right and is found at the beginning, and the sublist of items remaining to be sorted, occupying the
remainder of the array.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

113

Here is an example of this sort algorithm sorting �ve elements:

31 25 12 22 11

11 25 12 22 31

11 12 25 22 31

11 12 22 25 31

#include <stdio.h>
#include <conio.h>
void main()

{

int m[100];//100 is the maximum size for array m

int n; // n is the number of elements int i, j, k;

clrscr(); // clear screen

// Read the elements of array m

// Read the actual size of the array

printf(`` Enter the number of elements: ``);

scanf(``%d'',&n);

// Read array elements

for(i = 0;i<n;i++)

{

int temp;

printf(``\n Enter the value of m[%d] = ``,i);

scanf(``%d'',&temp);

m[i] = temp;

}

// Print the array

printf(``\n The array before sorting: ``);

for(i=0;i<n;i++)

printf(``%3d'',m[i]);

// Begin to sort

for(i = 0; i<n-1;i++)

{

// Put the minimum value in the list of n-i elements

//to the ith position

for(j = i+1;j<n;j++)

{

// compare m[i] with other element of the sublist

// and swap m[i] and m[j] if m[j] < m[i].

if(m[j]<m[i])

{

int temp;

temp = m[j]; m[j] = m[i]; m[i] = temp;

}

}

// Print the array after the i+1 th step of sorting process

printf(``\n The array after step %d'',i+1);

for(k = 0;k < n ;k++)

printf(``%3d'',m[k]);

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

114 CHAPTER 2. THE C PROGRAMMING LANGUAGES

getch(); // Wait until the user press any key.

}

here is the sample session with the above program

Enter the number of elements: : 5

Enter the value of m[0]: 34

Enter the value of m[1]: 20

Enter the value of m[2]: 17

Enter the value of m[3]: 65

Enter the value of m[4]: 21

The array before sorting: 34 20 17 65 21

The array after step 1: 17 34 20 65 21

The array after step 2: 17 20 34 65 21

The array after step 3: 17 20 21 65 34

The array after step 4: 17 20 21 34 65

2.4.3 Pointers vs Arrays

Pointers occur in many C programs as references to arrays , and also as elements of arrays. A pointer to an
array type is called an array pointer for short, and an array whose elements are pointers is called a pointer
array.

2.4.3.1 Array Pointers

For the sake of example, the following description deals with an array of int. The same principles apply for
any other array type, including multidimensional arrays.

To declare a pointer to an array type, you must use parentheses, as the following example illustrates:

int (* arrPtr)[10] = NULL; // A pointer to an array of

// ten elements with type int.

Without the parentheses, the declaration int * arrPtr[10]; would de�ne arrPtr as an array of 10 pointers to
int. Arrays of pointers are described in the next section.

In the example, the pointer to an array of 10 int elements is initialized with NULL. However, if we assign
it the address of an appropriate array, then the expression *arrPtr yields the array, and (*arrPtr)[i] yields the
array element with the index i. According to the rules for the subscript operator, the expression (*arrPtr)[i]
is equivalent to *((*arrPtr)+i). Hence **arrPtr yields the �rst element of the array, with the index 0.

In order to demonstrate a few operations with the array pointer arrPtr, the following example uses it to
address some elements of a two-dimensional array that is, some rows of a matrix:

int matrix[3][10]; // Array of three rows, each with 10 columns.

// The array name is a pointer to the first

// element; i.e., the first row.

arrPtr = matrix; // Let arrPtr point to the first row of

// the matrix.

(*arrPtr)[0] = 5; // Assign the value 5 to the first element of the

// first row.

//

arrPtr[2][9] = 6; // Assign the value 6 to the last element of the

// last row.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

115

//

++arrPtr; // Advance the pointer to the next row.

(*arrPtr)[0] = 7; // Assign the value 7 to the first element of the

// second row.

After the initial assignment, arrPtr points to the �rst row of the matrix, just as the array name matrix
does. At this point you can use arrPtr in the same way as matrix to access the elements. For example, the
assignment (*arrPtr)[0] = 5 is equivalent to arrPtr[0][0] = 5 or matrix[0][0] = 5.

However, unlike the array name matrix, the pointer name arrPtr does not represent a constant address,
as the operation ++arrPtr shows. The increment operation increases the address stored in an array pointer
by the size of one array in this case, one row of the matrix, or ten times the number of bytes in an int
element.

If you want to pass a multidimensional array to a function, you must declare the corresponding function
parameter as a pointer to an array type.

One more word of caution: if a is an array of ten int elements, then you cannot make the pointer from
the previous example, arrPtr, point to the array a by this assignment:

arrPtr = a; // Error: mismatched pointer types.

The reason is that an array name, such as a, is implicitly converted into a pointer to the array's �rst element,
not a pointer to the whole array. The pointer to int is not implicitly converted into a pointer to an array
of int. The assignment in the example requires an explicit type conversion, specifying the target type int
(*)[10] in the cast operator:

arrPtr = (int (*)[10])a; // OK

You can derive this notation for the array pointer type from the declaration of arrPtr by removing the
identi�er. However, for more readable and more �exible code, it is a good idea to de�ne a simpler name for
the type using typedef:

typedef int ARRAY_t[10]; // A type name for "array of ten int elements".

ARRAY_t a, // An array of this type,

*arrPtr; // and a pointer to this array type.

arrPtr = (ARRAY_t *)a; // Let arrPtr point to a.

2.4.3.2 Pointer Arrays

Pointer arrays that is, arrays whose elements have a pointer type are often a handy alternative to two-
dimensional arrays. Usually the pointers in such an array point to dynamically allocated memory blocks.

For example, if you need to process strings, you could store them in a two-dimensional array whose row
size is large enough to hold the longest string that can occur:

#define ARRAY_LEN 100

#define STRLEN_MAX 256

char myStrings[ARRAY_LEN][STRLEN_MAX] =

{ // Several corollaries of Murphy's Law:

"If anything can go wrong, it will.",

"Nothing is foolproof, because fools are so ingenious.",

"Every solution breeds new problems."

};

However, this technique wastes memory, as only a small fraction of the 25,600 bytes devoted to the array
is actually used. For one thing, a short string leaves most of a row empty; for another, memory is reserved
for whole rows that may never be used. A simple solution in such cases is to use an array of pointers that
reference the objects in this case, the strings and to allocate memory only for the pointer array and for
objects that actually exist. Unused array elements are null pointers.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

116 CHAPTER 2. THE C PROGRAMMING LANGUAGES

#define ARRAY_LEN 100

char *myStrPtr[ARRAY_LEN] = // Array of pointers to char

{ // Several corollaries of Murphy's Law:

"If anything can go wrong, it will.",

"Nothing is foolproof, because fools are so ingenious.",

"Every solution breeds new problems."

};

Figure 2.17: Pointer array

The diagram in illustrates how the objects are stored in memory. The pointers not yet used can be made to
point to other strings at runtime. The necessary storage can be reserved dynamically in the usual way. The
memory can also be released when it is no longer needed.

2.5 Functions6

2.5.1 Basic of C functions

Functions break large computing tasks into smaller ones, and enable people to build on what others have
done instead of starting over from scratch. Appropriate functions hide details of operation from parts of
the program that don't need to know about them, thus clarifying the whole, and easing the pain of making
changes.

C has been designed to make functions e�cient and easy to use; C programs generally consist of many
small functions rather than a few big ones. A program may reside in one or more source �les. Source �les
may be compiled separately and loaded together, along with previously compiled functions from libraries.
We will not go into that process here, however, since the details vary from system to system.

Function declaration and de�nition is the area where the ANSI standard has made the most changes to
C. It is now possible to declare the type of arguments when a function is declared. The syntax of function
declaration also changes, so that declarations and de�nitions match. This makes it possible for a compiler
to detect many more errors than it could before. Furthermore, when arguments are properly declared,
appropriate type coercions are performed automatically.

6This content is available online at <http://cnx.org/content/m27749/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

117

Every function is de�ned exactly once. A program can declare and call a function as many times as
necessary.

2.5.2 Declaration and Usage of Function

2.5.2.1 Function Declarations

The de�nition of a function consists of a function head (or the declarator) and a function block . The
function head speci�es the name of the function, the type of its return value, and the types and names of its
parameters, if any. The statements in the function block specify what the function does. The general form
of a function de�nition is as follows:

//function head

type function-name(parameter declarations)

//function block

{

declarations and statements

}

In the function head, name is the function's name, while type (return-type) consists of at least one type
speci�er, which de�nes the type of the function's return value. The return type may be void or any object
type, except array types. Furthermore, type may include the function speci�er inline, and/or one of the
storage class speci�ers extern and static.

A function cannot return a function or an array. However, you can de�ne a function that returns a
pointer to a function or a pointer to an array.

The parameterdeclarations are contained in a comma-separated list of declarations of the function's
parameters. If the function has no parameters, this list is either empty or contains merely the word void.

The type of a function speci�es not only its return type, but also the types of all its parameters. The
following listing is a simple function to calculate the volume of a cylinder.

// The cylinderVolume() function calculates the volume of a cylinder.

// Arguments: Radius of the base circle; height of the cylinder.

// Return value: Volume of the cylinder.

extern double cylinderVolume(double r, double h)

{

const double pi = 3.1415926536; // Pi is constant

return pi * r * r * h;

}

This function has the name cylinderVolume, and has two parameters, r and h, both with type double. It
returns a value with the type double.

return statement
The return statement ends execution of the current function, and jumps back to where the function was

called:

return [expression];

expression is evaluated and the result is given to the caller as the value of the function call. This return
value is converted to the function's return type, if necessary.

A function can contain any number of return statements:

// Return the smaller of two integer arguments.

int min(int a, int b)

{

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

118 CHAPTER 2. THE C PROGRAMMING LANGUAGES

if (a < b) return a;

else return b;

}

The contents of this function block can also be expressed by the following single statement:

return (a < b ? a : b);

The parentheses do not a�ect the behavior of the return statement. However, complex return expressions
are often enclosed in parentheses for the sake of readability.

A return statement with no expression can only be used in a function of type void. In fact, such functions
do not need to have a return statement at all. If no return statement is encountered in a function, the program
�ow returns to the caller when the end of the function block is reached.

2.5.2.2 Usage of Functions

The instruction to execute a function, the function call, consists of the function's name and the operator ().
For example, the following statement calls the function maximum to compute the maximum of the matrix
mat, which has r rows and c columns:

maximum(r, c, mat);

The program �rst allocates storage space for the parameters, then copies the argument values to the corre-
sponding locations. Then the program jumps to the beginning of the function, and execution of the function
begins with �rst variable de�nition or statement in the function block.

If the program reaches a return statement or the closing brace } of the function block, execution of the
function ends, and the program jumps back to the calling function. If the program "falls o� the end" of the
function by reaching the closing brace, the value returned to the caller is unde�ned. For this reason, you
must use a return statement to stop any function that does not have the type void. The value of the return
expression is returned to the calling function.

2.5.2.3 Scope of Variables

One of the C language's strengths is its �exibility in de�ning data storage. There are two aspects that can
be controlled in C: scope and lifetime. Scope refers to the places in the code from which the variable can be
accessed. Lifetime refers to the points in time at which the variable can be accessed.

Three scopes are available to the programmer:

• extern: This is the default for variables declared outside any function. The scope of variables with
extern scope is all the code in the entire program.

• static: The scope of a variable declared static outside any function is the rest of the code in that
source �le. The scope of a variable declared static inside a function is the rest of the local block.

• auto: This is the default for variables declared inside a function. The scope of an auto variable is the
rest of the local block.

Three lifetimes are available to the programmer. They do not have prede�ned keywords for names as scopes
do. The �rst is the lifetime of extern and static variables, whose lifetime is from before main() is called
until the program exits. The second is the lifetime of function arguments and automatics, which is from the
time the function is called until it returns. The third lifetime is that of dynamically allocated data. It starts
when the program calls malloc() or calloc() to allocate space for the data and ends when the program
calls free() or when it exits, whichever comes �rst.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

119

2.5.2.3.1 Local block

A local block is any portion of a C program that is enclosed by the left brace ({) and the right brace (}). A
C function contains left and right braces, and therefore anything between the two braces is contained in a
local block. An if statement or a switch statement can also contain braces, so the portion of code between
these two braces would be considered a local block. Additionally, you might want to create your own local
block without the aid of a C function or keyword construct. This is perfectly legal. Variables can be declared
within local blocks, but they must be declared only at the beginning of a local block. Variables declared in
this manner are visible only within the local block. Duplicate variable names declared within a local block
take precedence over variables with the same name declared outside the local block. Here is an example of
a program that uses local blocks:

#include <stdio.h>
void main(void);

void main()

{

/* Begin local block for function main() */

int test_var = 10;

printf(``Test variable before the if statement: %d\n'', test_var);

if (test_var > 5)

{

/* Begin local block for ``if'' statement */

int test_var = 5;

printf(``Test variable within the if statement: %d\n'', test_var);

{

/* Begin independent local block (not tied to any function or keyword) */

int test_var = 0;

printf(``Test variable within the independent local block:%d\n'', test_var);

}

/* End independent local block */

}

/* End local block for ``if'' statement */

printf(``Test variable after the if statement: %d\n'', test_var);

}

/* End local block for function main() */

This example program produces the following output:

Test variable before the if statement: 10

Test variable within the if statement: 5

Test variable within the independent local block: 0

Test variable after the if statement: 10

Notice that as each test_var was de�ned, it took precedence over the previously de�ned test_var. Also
notice that when the if statement local block had ended, the program had reentered the scope of the original
test_var, and its value was 10.

2.5.2.3.2 Functions and Storage Class Speci�ers

The function in the listing above is declared with the storage class speci�er extern. This is not strictly
necessary, since extern is the default storage class for functions. An ordinary function de�nition that does
not contain a static or inline speci�er can be placed in any source �le of a program. Such a function is
available in all of the program's source �les, because its name is an external identi�er. You merely have to
declare the function before its �rst use in a given translation unit. Furthermore, you can arrange functions

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

120 CHAPTER 2. THE C PROGRAMMING LANGUAGES

in any order you wish within a source �le. The only restriction is that you cannot de�ne one function within
another. C does not allow you to de�ne "local functions" in this way.

You can hide a function from other source �les. If you declare a function as static, its name identi�es it
only within the source �le containing the function de�nition. Because the name of a static function is not
an external identi�er, you cannot use it in other source �les. If you try to call such a function by its name
in another source �le, the linker will issue an error message, or the function call might refer to a di�erent
function with the same name elsewhere in the program.

The function printArray() in the following listing might well be de�ned using static because it is a
special-purpose helper function, providing formatted output of an array of �oat variables.

// The static function printArray() prints the elements of an array

// of float to standard output, using printf() to format them.

// Arguments: An array of float, and its length.

// Return value: None.

static void printArray(const float array[], int n)

{

for (int i=0; i < n; ++i)

{

printf("%12.2f", array[i]); // Field width: 12; decimal places: 2

if (i % 5 == 4) putchar('\n');// New line after every 5 numbers

}

if (n % 5 != 0) putchar('\n'); // New line at the end of the output

}

If your program contains a call to the printArray() function before its de�nition, you must �rst declare it
using the static keyword:

static void printArray(const float [], int);

int main()

{

float farray[123];

/* ... */

printArray(farray, 123);

/* ... */

}

2.5.2.4 Function prototype

A function prototype in C++ is a declaration of a function that omits the function body but does specify
the function's name, arity, argument types and return type. While a function de�nition speci�es what a
function does, a function prototype can be thought of as specifying its interface. Just like a blueprint, the
prototype tells the compiler what the function will return, what the function will be called, as well as what
arguments the function can be passed. The general format for a prototype is simple:

type function_name (arg_type arg1, ..., arg_type argN);

arg_type just means the type for each argument � for instance, an int, a �oat, or a char. It's exactly the
same thing as what you would put if you were declaring a variable.

There can be more than one argument passed to a function or none at all (where the parentheses are
empty), and it does not have to return a value. Functions that do not return values have a return type of
void. Lets look at a function prototype:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

121

int mult (int x, int y);

This prototype speci�es that the function mult will accept two arguments, both integers, and that it will
return an integer. Do not forget the trailing semi-colon. Without it, the compiler will probably think that
you are trying to write the actual de�nition of the function.

When the programmer actually de�nes the function, it will begin with the prototype, minus the semi-
colon. Then there should always be a block with the code that the function is to execute, just as you would
write it for the main function. Any of the arguments passed to the function can be used as if they were
declared in the block.

Lets look at an example program:

#include <stdio.h>
#include <conio.h>
int mult (int x, int y);

int main()

{

int x;

int y;

printf("Please input two numbers to be multiplied: ");

scanf("%d%d", &x,&y);

printf("The product of your two numbers is %d\n", mult (x, y)) ;

return 0;

getch();

}

int mult (int x, int y)

{

return x * y;

}

2.5.3 Parameters passing

The parameters of a function are ordinary local variables. The program creates them, and initializes them
with the values of the corresponding arguments, when a function call occurs. Their scope is the function
block. A function can change the value of a parameter without a�ecting the value of the argument in the
context of the function call. In the following listing, the factorial() function, which computes the factorial
of a whole number, modi�es its parameter n in the process.

//factorial() calculates n!, the factorial of a non-negative number n.

// For n > 0, n! is the product of all integers from 1 to n inclusive.

// 0! equals 1.

// Argument: A whole number, with type unsigned int.

// Return value: The factorial of the argument, with type long double.

long double factorial(register unsigned int n)

{

long double f = 1;

while (n > 1)

f *= n--;

return f;

}

Although the factorial of an integer is always an integer, the function uses the type long double in order
to accommodate very large results. As the above listing illustrates, you can use the storage class speci�er

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

122 CHAPTER 2. THE C PROGRAMMING LANGUAGES

register in declaring function parameters. The register speci�er is a request to the compiler to make a variable
as quickly accessible as possible. No other storage class speci�ers are permitted on function parameters.

2.5.3.1 Arrays as Function Parameters

If you need to pass an array as an argument to a function, you would generally declare the corresponding
parameter in the following form:

type name[]

Because array names are automatically converted to pointers when you use them as function arguments, this
statement is equivalent to the declaration:

type *name

When you use the array notation in declaring function parameters, any constant expression between the
brackets ([]) is ignored. In the function block, the parameter name is a pointer variable, and can be
modi�ed. Thus the function addArray() in the following listing modi�es its �rst two parameters as it adds
pairs of elements in two arrays.

// addArray() adds each element of the second array to the

// corresponding element of the first (i.e., "array1 += array2", so to speak).

// Arguments: Two arrays of float and their common length.

// Return value: None.

void addArray(register float a1[], register const float a2[], int len)

{

register float *end = a1 + len;

for (; a1 < end; ++a1, ++a2)

*a1 += *a2;

}

An equivalent de�nition of the addArray() function, using a di�erent notation for the array parameters,
would be:

void addArray(register float *a1, register const float *a2, int len)

{ /* Function body as earlier. */ }

An advantage of declaring the parameters with brackets ([]) is that human readers immediately recognize
that the function treats the arguments as pointers to an array, and not just to an individual �oat variable.
But the array-style notation also has two peculiarities in parameter declarations :

• In a parameter declaration and only there C allows you to place any of the type quali�ers const, volatile,
and restrict inside the square brackets. This ability allows you to declare the parameter as a quali�ed
pointer type.

• Furthermore, in C you can also place the storage class speci�er static, together with a integer constant
expression, inside the square brackets. This approach indicates that the number of elements in the
array at the time of the function call must be at least equal to the value of the constant expression.

Here is an example that combines both of these possibilities:

int func(long array[const static 5])

{ /* ... */ }

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

123

In the function de�ned here, the parameter array is a constant pointer to long, and so cannot be modi�ed.
It points to the �rst of at least �ve array elements.

In the following listing, the maximum() function's third parameter is a two-dimensional array of
variable dimensions.

// The function maximum() obtains the greatest value in a

// two-dimensional matrix of double values.

// Arguments: The number of rows, the number of columns, and the matrix.

// Return value: The value of the greatest element.

double maximum(int nrows, int ncols, double matrix[nrows][ncols])

{

double max = matrix[0][0];

for (int r = 0; r < nrows; ++r)

for (int c = 0; c < ncols; ++c)

if (max < matrix[r][c])

max = matrix[r][c];

return max;

}

The parameter matrix is a pointer to an array with ncols elements.

2.5.3.2 Pointers as Function Parameters

Since C passes arguments to functions by value, there is no direct way for the called function to alter a
variable in the calling function. For instance, a sorting routine might exchange two out-of-order arguments
with a function called swap. It is not enough to write

swap(a, b);

where the swap function is de�ned as

void swap(int x, int y) /* WRONG */

{

int temp;

temp = x;

x = y;

y = temp;

}

Because of call by value, swap can't a�ect the arguments a and b in the routine that called it. The function
above swaps copies of a and b.

The way to obtain the desired e�ect is for the calling program to pass pointers to the values to be changed:

swap(&a, &b);

Since the operator & produces the address of a variable, &a is a pointer to a. In swap itself, the parameters
are declared as pointers, and the operands are accessed indirectly through them.

void swap(int *px, int *py) /* interchange *px and *py */

{

int temp;

temp = *px;

*px = *py;

*py = temp;

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

124 CHAPTER 2. THE C PROGRAMMING LANGUAGES

{
Pictorially in Figure 2.18

Figure 2.18: swap function with pointer parameters

2.6 Strings7

2.6.1 Basic of strings

A string is a continuous sequence of characters terminated by '\0', the null character. The length of a
string is considered to be the number of characters excluding the terminating null character. There is no
string type in C, and consequently there are no operators that accept strings as operands.

Instead, strings are stored in arrays whose elements have the type char or wchar_t. Strings of wide char-
acters that is, characters of the type wchar_tare also called wide strings. The C standard library provides
numerous functions to perform basic operations on strings, such as comparing, copying, and concatenating
them.

2.6.2 Declarations and Uses of Strings

You can initialize arrays of char or wchar_t using string literals. For example, the following two array
de�nitions are equivalent:

char str1[30] = "Let's go"; // String length: 8; array length: 30.

char str1[30] = { 'L', 'e', 't', '\'', 's',' ', 'g', 'o', '\0' };

7This content is available online at <http://cnx.org/content/m27761/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

125

An array holding a string must always be at least one element longer than the string length to accommodate
the terminating null character. Thus the array str1 can store strings up to a maximum length of 29. It
would be a mistake to de�ne the array with length 8 rather than 30, because then it wouldn't contain the
terminating null character.

If you de�ne a character array without an explicit length and initialize it with a string literal, the array
created is one element longer than the string length. An Example

char str2[] = " to London!";// String length: 11 (note leading space);

// array length: 12.

The following statement uses the standard function strcat() to append the string in str2 to the string in
str1. The array str1 must be large enough to hold all the characters in the concatenated string.

#include <string.h>

char str1[30] = "Let's go";

char str2[] = " to London!";

/* ... */

strcat(str1, str2);

puts(str1);

The output printed by the puts() call is the new content of the array str1:
Let's go to London!
The names str1 and str2 are pointers to the �rst character of the string stored in each array. Such a

pointer is called a pointer to a string, or a string pointer for short. String manipulation functions
such as strcat() and puts() receive the beginning addresses of strings as their arguments. Such functions
generally process a string character by character until they reach the terminator, '\0'. The function in is
one possible implementation of the standard function strcat(). It uses pointers to step through the strings
referenced by its arguments.

2.6.3 Built-in Functions for Character and String Processing

2.6.3.1 Character Processing Functions

The standard library provides a number of functions to classify characters and to perform conversions on
them. The header ctype.h declares such functions for byte characters, with character codes from 0 to 255.

The results of these functions, except for isdigit() and isxdigit(), depends on the current locale setting
for the locale category LC_CTYPE. You can query or change the locale using the setlocale() function.

2.6.3.2 Character Classi�cation Functions

The functions listed in Table 2.22: Character classi�cation functions test whether a character belongs to a
certain category. Their return value is nonzero, or true, if the argument is a character code in the given
category.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

126 CHAPTER 2. THE C PROGRAMMING LANGUAGES

Character classi�cation functions

Category Functions

Letters isalpha()

Lowercase letters islower()

Uppercase letters isupper()

Decimal digits isdigit()

Hexadecimal digits isxdigit()

Letters and decimal digits isalnum()

Printable characters (including whitespace) isprint()

Printable, non-whitespace characters isgraph()

Whitespace characters isspace()

Whitespace characters that separate words in a line of text isblank()

Punctuation marks ispunct()

Control characters iscntrl()

Table 2.22

The functions isgraph() and iswgraph() behave di�erently if the execution character set contains
other byte-coded, printable, whitespace characters (that is, whitespace characters which are not control
characters) in addition to the space character (' '). In that case, iswgraph() returns false for all such
printable whitespace characters, while isgraph() returns false only for the space character (' ').

2.6.3.3 Case Mapping Functions

The functions listed in Table 2.23: Character conversion functions yield the uppercase letter that corresponds
to a given lowercase letter, and vice versa. All other argument values are returned unchanged.

Character conversion functions

Conversion Functions in ctype.h

Upper- to lowercase tolower()

Lower- to uppercase toupper()

Table 2.23

2.6.3.3.1 String Processing Functions

A string is a continuous sequence of characters terminated by '\0', the string terminator character. The
length of a string is considered to be the number of characters before the string terminator. Strings are
stored in arrays whose elements have the type char or wchar_t. Strings of wide characters that is, characters
of the type wchar_tare also called wide strings.

C does not have a basic type for strings, and hence has no operators to concatenate, compare, or assign
values to strings. Instead, the standard library provides numerous functions, listed in

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

127

Table 2.24: String-processing functions to perform these and other operations with strings. The header
string.h declares the functions for conventional strings of char. The names of these functions begin with
str.

Like any other array, a string that occurs in an expression is implicitly converted into a pointer to its �rst
element. Thus when you pass a string as an argument to a function, the function receives only a pointer to
the �rst character, and can determine the length of the string only by the position of the string terminator
character.

String-processing functions

Purpose Functions

Find the length of a string. strlen()

Copy a string. strcpy(), strncpy()

Concatenate strings. strcat(), strncat()

Compare strings. strcmp(), strncmp(), strcoll()

Transform a string so that a comparison of two
transformed strings using strcmp() yields the same
result as a comparison of the original strings using
the locale-sensitive function strcoll().

strxfrm()

In a string, �nd:

- The �rst or last occurrence of a given character strchr(), strrchr()

- The �rst occurrence of another string strstr()

- The �rst occurrence of any of a given set of char-
acters

strcspn(), strpbrk()

- The �rst character that is not a member of a given
set

strspn()

Parse a string into tokens strtok()

Table 2.24

Example 2.13

#include <stdio.h>
#include <conio.h>
#include <string.h> // You must declare the library string.h

// to use functions strcpy, strcmp...

void main()

{

char str1[10] = ``abc'';

char str2[10] = ``def'';

clrscr();

printf(`` str1: %s'',str1);

printf(``\n str2: %s'',str2);

printf(``\n strcmp(str1,str2) = %d'',strcmp(str1,str2));

printf(``\n strcat(str1,str2) = %s'',strcat(str1,str2));

printf(``\n str1: %s'',str1);

printf(``\n str2: %s'',str2);

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

128 CHAPTER 2. THE C PROGRAMMING LANGUAGES

printf(``\n strcpy(str1,str2) = %s'',strcpy(str1,str2));

printf(``\n str1: %s'',str1);

printf(``\n str2: %s'',str2);

strcpy(str1,''ab'');

strcpy(str2,''abc'');

printf(``\n strcmp(str1,str2) = %d'',strcmp(str1,str2));

getch();

}

here is the sample session with the above program

str1: abc

str2: def

strcmp(str1,str2) = -3

strcat(str1,str2) = abcdef

str1: abcdef

str2: def

strcpy(str1,str2) = def

str1: def

str2: def

strcmp(str1,str2) = -3

2.7 Structures8

2.7.1 Introduction

A structure type can contain a number of dissimilar data objects within it. Unlike a simple variable (which
contains only one data object) or an array (which, although it contains more than one data item, only
contains items of a single data type),a structure is a collection of related data of di�erent types. a name,
for example, might be array of characters, an age might be integer. A structure representing a person, say,
could contain both a name and an age, each represented in the appropriate format.

2.7.2 Declarations and Usage of Structures

Until now, all the data that we have dealt with has been either of a basic type such as char, int and double. . .,
or an array of those types. However, there are many situations in real life where a data item needs to be
made up from other more basic types. We could do this with an array if the constituent types were all the
same, but often they are di�erent. For example, suppose we want to record the details of each student in a
class. The detail of each student might be as follow:

• A unique student number, which could be represented as a string (an array of char).
• The student's name, which could be represented as a string (an array of char).
• Final mark for the Introduction to computer science course, which is a �oating point value (a �oat).

2.7.2.1 Creating Structures as New Data Types

The de�nition of a structure type begins with the keyword struct, and contains a list of declarations of the
structure's members, in braces:

8This content is available online at <http://cnx.org/content/m27764/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

129

struct structTag

{

<list of members>;

};

note: De�nition ends with semicolon (;)

Example 2.14
The three components above can be placed in a structure declared like this:

struct Student

{

char StudentID[10];

char name[30];

float markCS ;

};

The keyword struct introduces a structure declaration, which is a list of declarations enclosed in braces.
An optional name called a structure tag may follow the word struct (as with Student here). The tag names
this kind of structure, and can be used subsequently as a shorthand for the part of the declaration in braces.
The variables named in a structure are called members. A structure member or tag and an ordinary (i.e.,
non-member) variable can have the same name without con�ict, since they can always be distinguished by
context. Furthermore, the same member names may occur in di�erent structures, although as a matter of
style one would normally use the same names only for closely related objects.

2.7.2.2 Creating variable of a struct type

Structure types are not considered a variable declaration, just de�nition of a new type, so they cannot store
anything until we declare variable of this type. Here is how we would create:

type_name_of_struct name_of_variable;

Example 2.15
Creating three variables a, b, c of the Student type:

Student a, b, c;

Creating an array of the Student type:

Student studentCS[50];

A member of a structure may have any desired complete type, including previously de�ned structure types.
They must not be variable-length arrays, or pointers to such arrays. For instance, now we want to record
more information of students, for example their date of birth, which comprises the day, month and year.
So �rst, let's start with the date, because that is a new type that we may be able to use in a variety of
situations. We can declare a new type for a Date thus:

struct Date

{

int day;

int month;

int year;

};

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

130 CHAPTER 2. THE C PROGRAMMING LANGUAGES

We can now use this Date type, together with other types, as members of a Student type which we can
declare as follows:

struct Student

{

char studentID[10];

char name[30];

float markCS ;

Date dateOfBirth;

};

Or

struct Student

{

char studentID[10];

char name[30];

float markCS;

struct Date {

int day;

int month;

int year;

} dateOfBirth;

};

We can also declare structured variables when we de�ne the structure itself:

struct Student

{

char studentID[10];

char name[30];

float markCS ;

Date dateOfBirth;

} a, b, c;

C permits to declare untagged structures that enable us to declare structure variables without de�ning a
name for their structures. For example, the following structure de�nition declares the variables a, b, c but
omits the name of the structure:

struct

{

char studentID[10];

char name[30];

float markCS ;

Date dateOfBirth;

} a, b, c;

A structure type cannot contain itself as a member, as its de�nition is not complete until the closing brace (}).
However, structure types can and often do contain pointers to their own type. Such self-referential structures
are used in implementing linked lists and binary trees, for example. The following example de�nes a type
for the members of a singly linked list:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

131

struct List

{ struct Student stu; // This record's data.

struct List *pNext; // A pointer to the next student.

};

2.7.2.3 Referencing Structure Members with the Dot Operator

Whenever we need to refer to the members of a structure, we normally use the dot operator.
For example, if we wanted to access the number member of newStudent we could do so as follows:
newStudent.studentID
We can then access the member as if it were a normal variable. For instance, we can write to this member

as follows.
newStudent.studentID= �C0681008�;
We can also read from the member in a similar fashion.

printf("Student identification: %s", newStudent.studentID);

The following code outputs the contents of an Student structure.

printf("Student Details\n");
printf("Identification: %s\n", newStudent.studentID);

printf("Name: %s\n", newStudent.name);

printf("Mark: %.2f\n", newStudent.markCS);

printf("Date of Birth: %i/%i/%i\n",
newStudent.dateOfBirth.day,

newStudent.dateOfBirth.month,

newStudent.dateOfBirth.year

);

Suppose we wish to input the details of this employee from a user. We could do so as follows.

Student newStudent;

printf("Enter student identification: ");

scanf("%s", &newStudent.studentID);

printf("Enter student name: ");

fflush(stdin);gets(newStudent.name);

printf("Enter mark for Introduction to computer science course: '');

scanf("%f", &newStudent.markCS);

printf("Enter birth date (dd/mm/yyyy): ");

scanf("%i/%i/%i",

&newStudent.dateOfBirth.day,

&newStudent.dateOfBirth.month,

&newStudent.dateOfBirth.year

);

2.7.2.4 Initializing Structure Variables

When we declare a new variable of a basic data type we can initialize its value at declaration. We can also
initialize structure variables at declaration as shown below.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

132 CHAPTER 2. THE C PROGRAMMING LANGUAGES

Student newStudent = {

"C0681008",

"Cao Anh Huy",

8.50,

{1, 2, 1985}

};

Notice how we include the initialization values in curly brackets, just like when we initialize an array.
Furthermore, we include the values for any nested structure type (in this case the dateOfBirth member is
a nested structure), in a further set of curly brackets.

2.7.2.5 Copying Structure Variables

One of the most convenient features of structures is that we can copy them in a single assignment operation.
This is unlike an array, which must be copied item-by-item. The name of a structure variable when it appears
on its own represents the entire structure. If a structure contains an array as a member, that array is copied
if the entire structure is copied.

Student newStudent1, newStudent2;

// Get the values for newStudent2

...

// Copy newStudent2's value to newStudent1

newStudent1 = newStudent2;

2.7.2.6 Comparing Values of Structures

We cannot compare structures in a single operation. If we wish to compare the values of two structure
variables, we need to compare each of their members.

2.7.3 Arrays of Structures

Just as we can have an array of basic data types, we can also have an array of structures. Suppose that we
created an array of Student structures as follows. We could then copy newStudent into each position in
the array.

Student students[100];

Student newStudent;

int i;

for (i=0; i<100; i++)

{

// Get the values for newStudent

...

// Copy into the next position in the array

students[i] = newStudent;

}

2.7.4 Operations on Structures

2.7.4.1 Passing Structures to and from Functions

Structures can be passed to functions just like any other data type. Functions can also return structures,
just as they can return any basic type. Structures can be also be passed to functions by reference.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

133

Just like passing variable of a basic data type, when we pass a structure as an argument to a function,
a copy is made of the entire structure. Structures are passed by value. We can easily take the code that
output a student and put it into a function as follows.

void outputStudent(Student stu)

{

printf("Student Details\n");
printf("Identification: %s\n", stu.studentID);

printf("Name: %s\n", stu.name);

printf("Mark: %.2f\n, stu.markCS);

printf("Date of Birth: %i/%i/%i\n",
stu.dateOfBirth.day,

stu.dateOfBirth.month,

stu.dateOfBirth.year

);

}

If we had an array of 100 students and wanted to output them this would be straightforward:

Student students[100];

int i;

...

for (i=0; i<100; i++) {

outputStudent(students[i]);

}

We could similarly place the code to input a student into a function, but now we have a problem. The
function can return a structure of type Student as follows.

Student inputStudent()

{

Student tempStudent;

printf("Enter Student identification: ");

scanf("%s", &tempStudent.studentID);

printf("Enter Student name: ");

fflush(stdin);gets(tempStudent.name);

printf("Enter final mark: ");

scanf("%f", &tempStudent.markCS);

printf("Enter birth date (dd/mm/yyyy):");

scanf("%i/%i/%i",

&tempStudent.dateOfBirth.day,

&tempStudent.dateOfBirth.month,

&tempStudent.dateOfBirth.year

);

return tempStudent;

}

In the example above we are �lling the structure variable tempStudent with values. At the end of the
function, the value of tempStudent is returned as the return value of the function. The code to input 100
students can now be modi�ed to use this function:

Student students[100];

int i;

for (i=0; i<100; i++) {

students[i] = inputStudent();

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

134 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.7.4.2 The Arrow Operator

In order to dereference a pointer we would normally use the dereferencing operator (*) and if we our pointer
was to a structure, we could subsequently use the dot '.' operator to refer to a member of the structure.
Suppose we have declared a pointer which could be used to point to a structure of type employee as follows.

Student stuVariable;

Student *stuPtr;

stuPtr = &stuVariable;

To refer to the student identi�cation we could say:

(*stuPtr).studentID

Note that the brackets are necessary because the dereference operator has lower precedence than the dot
operator. This form of syntax is a little cumbersome, so another operator is provided to us as a convenient
shorthand:

stuPtr->studentID

This method of accessing the number member through a pointer is completely equivalent to the previous
form. The '->' operator is called the indirect member selection operator or just the arrow operator and it is
almost always used in preference to the previous form.

2.7.4.3 Passing Structures by Reference

Passing structures to a function using pass-by-value can be simple and successful for simple structures so long
as we do not wish to do so repeatedly. But when structures can contain a large amount of data (therefore
occupying a large chunk of memory) then creating a new copy to pass to a function can create a burden on
the memory of the computer. If we were going to do this repeatedly (say several thousand times within the
running of a computer) then there would also be a cost in time to copy the structure for each function call.

In the example at the beginning of this section we created and �lled a structure variable called temp-
Student. When the function ended it returned the value of tempStudent. The same ine�ciency exists with
the return value from the function, where the Student structure must be copied to a local variable at the
function call.

Whether such ine�ciencies are of any signi�cance or not depends on the circumstances and on the size of
the structure. Each Student structure probably occupies about 50 bytes, so this is a reasonably signi�cant
amount of memory to be copying each time the output function is called or each time the input function
returns, especially if this is happening frequently.

A better solution would be to pass the Student structure by reference, which means we will pass a pointer
to the structure.

We can now revise the input function by passing an Student structure by reference using a pointer.
Because the function is no longer returning an Student structure, we can also enhance the function to return
a Boolean status indicating whether an Student structure was successfully read or not. We can enhance our
function to do some better error checking. Below is the revised version.

bool inputStudent(Student *stuPtr)

{

printf("Enter Student identification: ");

if (scanf("%s", &stuPtr->studentID) != 1) return false;

printf("Enter Student name: ");

fflush(stdin);gets(stuPtr->name);

printf("Enter mark: ");

if (scanf("%f", &stuPtr->markCS) != 1) return false;

printf("Enter birth date: ");

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

135

if (scanf("%i/%i/%i",&stuPtr->dateOfBirth.day,

&stuPtr->dateOfBirth.month,&stuPtr->dateOfBirth.year) != 3)

return false;

return true;

}

The code to input 100 students can now be revised as follows.

Student students[100];

int i;

for (i=0; i<100; i++)

{

while (!inputStudent(&students[i]))

{

printf("Invalid student details - try again!\n");
fflush(stdin);

}

}

As a �nal example, consider a function to give s student a mark rise. The function takes two parameters.
The �rst is an Student structure passed by reference, (a pointer to an Student structure) and the second is
the increase of mark.

void markRise(Student *stuPtr, float increase)

{

stuPtr->markCS += increase;

}

What use is such a function? Having input many students into an array, we might then wish to give certain
students a mark rise. For each student we can easily call this function, passing a pointer to the appropriate
Student structure.

2.7.5 Enumerated Types

Another way of creating a new type is by creating an enumerated type. With an enumerated type we build
a new type from scratch by stating which values are in the type. The syntax for an enumerated type is as
follows.

enum TypeIdentifier { list... };

Here is an example of a de�nition of an enumerated type that can be used to refer to the days of the week.

enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};

Just like when we de�ne a structure type, de�ning an enumerated type does not give us any space to store
information. We use the type like a template to create variables of that type.

For instance we can create a variable of type DayOfWeek as follows.

DayOfWeek nameOfDay;

With variables of enumerated types we can do almost anything we could do with a variable of a basic data
type. For instance we can assign a value as follows.

nameOfDay = tue;

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

136 CHAPTER 2. THE C PROGRAMMING LANGUAGES

Note that tue is a literal value of type DayOfWeek and we do not need to place quotes around it.
The values in DayOfWeek are ordered and each has an equivalent int value; sun==0, mon==1, and

so on. The value of sun is less than the value of wed because of the order they were presented in the list of
values when de�ning the type. We can compare two values of enumerated types as follows:

DayOfWeek day1, day2;

// Get day values

...

if(day1 < day2) {

...

}

Here is another example that uses enumerated types.

#include <stdio.h>
#include <conio.h>
enum TrafficLight {red, orange, green};

int main()

{

TrafficLight light;

printf("Please enter a Light Value: (0)Red (1)Orange (2)Green:\n");
scanf("%i", &light);

switch(light)

{

case red:

printf("Stop!\n");
break;

case orange:

printf("Slow Down\n");
break;

case green:

printf("Go\n");
}

getch();

}

2.8 Files9

2.8.1 Basics and Classi�cation of Files

When reading input from the keyboard and writing output to the monitor you have been using a special
case of �le I/O (input/output). You already know how to read and write text data, as you have been doing
it every time you use scanf() and printf(). All you need to do now is learn how to direct I/O to �le other
than from your keyboard or to your monitor.

Abstractly, a �le is a collection of bytes stored on a secondary storage device, which is generally a disk of
some kind. The collection of bytes may be interpreted, for example, as characters, words, lines, paragraphs
and pages from a textual document; �elds and records belonging to a database; or pixels from a graphical
image. The meaning attached to a particular �le is determined entirely by the data structures and operations
used by a program to process the �le. It is conceivable (and it sometimes happens) that a graphics �le will
be read and displayed by a program designed to process textual data. The result is that no meaningful

9This content is available online at <http://cnx.org/content/m27743/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

137

output occurs (probably) and this is to be expected. A �le is simply a machine decipherable storage media
where programs and data are stored for machine usage.

Essentially there are two kinds of �les that programmers deal with text �les and binary �les:

• Text �les are any �les that contain only ASCII characters. Examples include C source code �les,
HTML �les, and any �le that can be viewed using a simple text editor.

• Binary �les are any �les that created by writing on it from a C-program, not by an editor (as with
text �les). Binary �les are very similar to arrays of records, except the records are in a disk �le rather
than in an array in memory. Because the records in a binary �le are on disk, you can create very large
collections of them (limited only by your available disk space). They are also permanent and always
available. The only disadvantage is the slowness that comes from disk access time.

A text �le can be a stream of characters that a computer can process sequentially. It is not only processed
sequentially but only in forward direction. For this reason a text �le is usually opened for only one kind of
operation (reading, writing, or appending) at any given time.

Similarly, since text �les only process characters, they can only read or write data one character at a
time. (In C Programming Language, Functions are provided that deal with lines of text, but these still
essentially process data one character at a time). A text stream in C is a special kind of �le. Depending
on the requirements of the operating system, newline characters may be converted to or from carriage-
return/linefeed combinations depending on whether data is being written to, or read from, the �le. Other
character conversions may also occur to satisfy the storage requirements of the operating system. These
translations occur transparently and they occur because the programmer has signaled the intention to process
a text �le.

A binary �le is no di�erent to a text �le. It is a collection of bytes. In C Programming Language a
byte and a character are equivalent. Hence a binary �le is also referred to as a character stream, but there
are two essential di�erences.

• No special processing of the data occurs and each byte of data is transferred to or from the disk
unprocessed.

• C Programming Language places no constructs on the �le, and it may be read from, or written to, in
any manner chosen by the programmer.

Binary �les can be either processed sequentially or, depending on the needs of the application, they can be
processed using random access techniques. In C Programming Language, processing a �le using random
access techniques involves moving the current �le position to an appropriate place in the �le before reading
or writing data. This indicates a second characteristic of binary �les � they a generally processed using read
and write operations simultaneously.

For example, a database �le will be created and processed as a binary �le. A record update operation
will involve locating the appropriate record, reading the record into memory, modifying it in some way, and
�nally writing the record back to disk at its appropriate location in the �le. These kinds of operations are
common to many binary �les, but are rarely found in applications that process text �les.

For all �le operations you should always follow the 5-step plan as outlined below.

1. Declare �le pointer.
2. Attach the �le pointer to the �le (open �le).
3. Check �le opened correctly.
4. Read or Write the data from or to the �le.
5. Close the �le.

2.8.2 Operations on Files

2.8.2.1 Declarations

In C, we usually create variables of type FILE * to point to a �le located on the computer.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

138 CHAPTER 2. THE C PROGRAMMING LANGUAGES

FILE *file_pointer_name;

Example

FILE * f1, * f2;

2.8.2.2 Open Files

First things �rst: we have to open a �le to be able to do anything else with it. For this, we use fopen function,
like all the I/O functions, is made available by the stdio.h library. The fopen() function prototype is as
follows.

FILE *fopen(char *filename, char *mode);

In the above prototype, there are two arguments:

• �lename is a string containing the name of the �le to be opened. So if your �le sits in the same
directory as your C source �le, you can simply enter the �lename in here - this is probably the one
you'll use most.

• mode determines how the �le may be accessed.

Mode Meaning

�r� Open a �le for read only, starts at beginning of �le
(default mode).

�w� Write-only, truncates existing �le to zero length or
create a new �le for writing.

�a� Write-only, starts at end of �le if �le ex-
ists,otherwise creates a new �le for writing.

�r+� Open a �le for read-write, starts at beginning of
�le. If the �le is not exist, it will cause an error.

�w+� Read-write, truncates existing �le to zero length or
creates a new �le for reading and writing.

�a+� Read-write, starts at end of �le if �le exists, other-
wise creates a new �le for reading and writing.

Table 2.25

So there are 12 di�erent values that could be used: "rt", "wt", "at", "r+t", "w+t", "a+t" and
"rb", "wb", "ab", "r+b", "w+b", "a+b".

Character Type

�t� Text File

�b� Binary File

Table 2.26

note: When work with the text �le, you also can use only "r", "w", "a", "r", "w�, "a", instead of
"rt", "wt", "at", "r+t", "w+t", "a+t" respectively.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

139

Example

FILE *f1, *f2, *f3, *f4;

To open text �le c:\abc.txt for ready only:

f1 = fopen("c:\\abc.txt", "r");

To open text �le c:\list.dat for write only:

f2 = fopen("c:\\list.dat", "w");

To open text �le c:\abc.txt for read-write:

f3 = fopen("c:\\abc.txt", "r+");

To open binary �le c:\liststudent.dat for write only:

f4 = fopen("c:\\liststudent.dat", "wb");

The �le pointer will be used with all other functions that operate on the �le and it must never be altered or
the object it points to.

File checking

if (file_pointer_name == NULL)

{

printf("Error opening file.");

<Action for error >
}

else

{

<Action for success>
}

Before using an input/output �le it is worth checking that the �le has been correctly opened �rst. A call to
fopen() may result in an error due to a number of reasons including:

• A �le opened for reading does not exist;
• A �le opened for reading is read protected;
• A �le is being opened for writing in a folder or directory where you do not have write access.

If the operation is successful, fopen() returns an address which can be used as a stream. If a �le is not
successfully opened, the value NULL is returned. An error opening a �le can occur if the �le was to be
opened for reading and did not exist, or a �le opened for writing could not be created due to lack of disk
space. It is important to always check that the �le has opened correctly before proceeding in the program.

Example 2.16

FILE *fp;

if ((fp = fopen("myfile", "r")) ==NULL){

printf("Error opening file\n");
exit(1);

}

Once a �le has been opened, depending upon its mode, you may read and/or write bytes to or from it.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

140 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.8.2.3 Access to Text Files

2.8.2.3.1 Write data to text �les

When writing data to text �les, C provides three functions: fprintf(), fputs(), fputc().
The fprintf() function prototype is as follows:

int fprintf(FILE *fp, char *format, ...);

This function writes to the �le speci�ed by �le pointer fp a sequence of data formatted as the format
argument speci�es. After the format parameter, the function expects at least as many additional arguments
as speci�ed in format. Depending on the format string, the function may expect a sequence of additional
arguments, each containing one value to be inserted instead of each %-tag speci�ed in the format parameter,
if any. There should be the same number of these arguments as the number of %-tags that expect a value.

Return value: On success, the total number of characters written is returned. On failure, a negative
number is returned.

Example 2.17

#include <stdio.h>

int main ()

{

FILE * fp;

int n;

char name [50];

fp = fopen ("myfile.txt","w");

for (n=0 ; n<3 ; n++)

{

puts ("Please, enter a name: ");

gets (name);

fprintf (fp, "Name %d [%-10.10s]\n",n,name);
}

fclose (fp);

return 0;

}

This example prompts 3 times the user for a name and then writes them to my�le.txt each one in a line with
a �xed length (a total of 19 characters + newline). Two format tags are used: %d : signed decimal integer,
%-10.10s : left aligned (-), minimum of ten characters (10), maximum of ten characters (.10), String (s).

Assuming that we have entered John, Jean-Francois and Yoko as the 3 names, my�le.txt would contain:

my�le.txt

Name 1 [John]

Name 2 [Jean-Franc]

Name 3 [Yoko]

Table 2.27

The fputc() function prototype is as follows.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

141

int fputc(int character, FILE *fp);

The fputc() function writes a character to the �le associated with fp. The character is written at the current
position of the fp as indicated by the internal position indicator, which is then advanced one character

Return value: If there are no errors, the same character that has been written is returned.If an error
occurs, EOF is returned and the error indicator is set.

Example 2.18
Write the program that creates a �le called alphabet.txt and writes ABCDEFGHI-
JKLMNOPQRSTUVWXYZ to it.

#include <stdio.h>
int main ()

{

FILE * fp;

char c;

fp = fopen ("alphabet.txt","w");

if (fp!=NULL)

{

for (c = 'A' ; c <= 'Z' ; c++)

{

fputc ((int) c , fp);

}

fclose (fp);

}

return 0;

}

The fputs() function prototype is as follows.

int fputs(char *str,FILE *fp);

The fputs() function writes the string pointed to by str to the �le associated with fp.
Return value: On success, a non-negative value is returned. On error, the function returns EOF. The null

that terminates str is not written and it does not automatically append a carriage return/linefeed sequence.

Example 2.19
Write the program allows to append a line to a �le called my�le.txt each time it is run.

#include <stdio.h>
int main ()

{

FILE * fp;

char name [50];

puts ("Please, enter a name: ");

gets (name);

fp = fopen ("myfile.txt","a");

fputs (name,fp);

fclose (fp);

return 0;

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

142 CHAPTER 2. THE C PROGRAMMING LANGUAGES

2.8.2.3.2 Read data from text �les

When reading data from text �les, C provides three functions: fscanf(),fgetc(), fgets().
The fscanf() function prototype is as follows.

int fscanf(FILE *fp, char *format, ...);

This function reads data from the �le speci�ed by �le pointer fp and stores them according to the parameter
format into the locations pointed by the additional arguments. The additional arguments should point to
already allocated objects of the type speci�ed by their corresponding format tag within the format string.

Return value: On success, the function returns the number of items successfully read. This count can
match the expected number of readings or be less -even zero- in the case of a matching failure. In the case
of an input failure before any data could be successfully read, EOF is returned.

Example 2.20
Read an integer number and a character from �le associated with a �le pointer fp and stores them
to two variables a and c.

fscanf(fp, "%d %c",&a, &c);

Example 2.21

#include <stdio.h>
int main ()

{

char str [80];

float f;

FILE * fp;

fp = fopen ("myfile.txt","w+");

fprintf (fp, "%f %s", 3.1416, "PI");

rewind (fp);

fscanf (fp, "%f", &f);

fscanf (fp, "%s", str);

fclose (fp);

printf ("I have read: %f and %s \n",f,str);
return 0;

}

This sample code creates a �le called my�le.txt and writes a �oat number and a string to it. Then, the
stream is rewinded and both values are read with fscanf. It �nally produces an output similar to:

I have read: 3.141600 and PI

2.8.2.3.3 feof() function

int feof(FILE *fp);

This function check if End-of-File indicator associated with fp is set
Return value: A non-zero value is returned in the case that the End-of-File indicator associated with the

fp is set. Otherwise, a zero value is returned.

Example 2.22
Create a text �le called fscanf.txt in Notepad with this content:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

143

0 1 2 3 4

5 6 7 8 9

10 11 12 13

Remember how scanf stops reading input when it encounters a space, line break or tab character?
fscanf is just the same. So if all goes to plan, this example should open the �le, read all the numbers
and print them out:

#include <stdio.h>
int main() {

FILE *fp;

int numbers[30];

/* make sure it is large enough to hold all the data! */

int i,j;

fp = fopen("fscanf.txt", "r");

if(fp==NULL) {

printf("Error: can't open file.\n");
return 1;

}

else {

printf("File opened successfully.\n");

i = 0 ;

while(!feof(fp)) {

/* loop through and store the numbers into the array */

fscanf(fp, "%d", &numbers[i]);

i++;

}

printf("Number of numbers read: %d\n\n", i);

printf("The numbers are:\n");

for(j=0 ; j<i ; j++) { /* now print them out one by one */

printf("%d\n", numbers[j]);

}

fclose(fp);

return 0;

}

}

2.8.2.3.4 �ush() function

Same as scanf(), before using fscanf() to read the character or string from the �le, we need use�ush().The
�ush() function prototype is as follows.

int fflush(FILE *fp)

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

144 CHAPTER 2. THE C PROGRAMMING LANGUAGES

If the given �le that speci�ed by fp was open for writing and the last I/O operation was an output operation,
any unwritten data in the output bu�er is written to the �le. If the �le was open for reading, the behavior
depends on the speci�c implementation. In some implementations this causes the input bu�er to be cleared.
If the argument is a null pointer, all open �les are �ushed. The �les remains open after this call. When a
�le is closed, either because of a call to fclose or because the program terminates, all the bu�ers associated
with it are automatically �ushed.

Return Value: A zero value indicates success. If an error occurs, EOF is returned and the error indicator
is set (see feof).

2.8.2.3.5 fgetc() function

The fgetc() function prototype is as follows.

int fgetc(FILE *fp);

This function returns the character currently pointed by the internal �le position indicator of the speci�ed
fp. The internal �le position indicator is then advanced by one character to point to the next character.

Return value: The character read is returned as an int value. If the EOF is reached or a reading error
happens, the function returns EOF and the corresponding error or eof indicator is set. You can use either
ferror or feof to determine whether an error happened or the EOF was reached.

Example 2.23
Write the program reads an existing �le called my�le.txt character by character and uses the n
variable to count how many dollar characters ($) does the �le contain.

#include <stdio.h>
int main ()

{

FILE * fp;

int c;

int n = 0;

fp=fopen ("myfile.txt","r");

if (fp==NULL) printf("Error opening file");

else

{

do {

c = fgetc (fp);

if (c == '$') n++;

} while (c != EOF);

fclose (fp);

printf ("File contains %d$.\n",n);
}

return 0;

}

Example 2.24
Write the program opens the �le called my�le.txt, and counts the number of characters that it
contains by reading all of them one by one. Finally the total amount of bytes is printed out.

#include <stdio.h>
int main ()

{

FILE * fp;

long n = 0;

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

145

fp = fopen ("myfile.txt","rb");

if (fp==NULL) printf ("Error opening file");

else

{

while (!feof(fp)) {

fgetc (fp);

n++;

}

fclose (fp);

printf ("Total number of bytes: %d\n",n);
}

return 0;

}

Example 2.25
Opens a �le called input.txt which has some random text (less than 200 characters), stores each
character in an array, then spits them back out into another �le called "output.txt" in reverse order:

#include <stdio.h>
int main() {

char c; /* declare a char variable */

char name[200]; /* Initialize array of total

200 for characters */

FILE *f_input, *f_output; /* declare FILE pointers */

int counter = 0; /* Initialize variable for counter to zero */

f_input = fopen("input.txt", "r");

/* open a text file for reading */

if(f_input==NULL) {

printf("Error: can't open file.\n");
return 1;

}

else {

while(1) { /* loop continuously */

c = fgetc(f_input); /* fetch the next character */

if(c==EOF) {

/* if end of file reached, break out of loop */

break;

}

else if (counter<200) { /* else put character into array */

name[counter] = c;

counter++; /* increment the counter */

}

else {

break;

}

}

fclose(f_input); /* close input file */

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

146 CHAPTER 2. THE C PROGRAMMING LANGUAGES

f_output = fopen("output.txt", "w");

/* create a text file for writing */

if(f_output==NULL) {

printf("Error: can't create file.\n");
return 1;

}

else {

counter--; /* we went one too step far */

while(counter >= 0) { /* loop while counter's above zero */

fputc(name[counter], f_output);

/* write character into output file */

counter--; /* decrease counter */

}

fclose(f_output); /* close output file */

printf("All done!\n");
return 0;

}

}

}

Reading one character at a time can be a little ine�cient, so we can use fgets to read one line at a time.
The fgets() function prototype is as follows.

char *fgets(char *str, int num, FILE *fp);

The fgets() function reads characters from the �le associated with fp into a string pointed to by str until
num-1 characters have been read, a newline character is encountered, or the end of the �le is reached. The
string is null-terminated and the newline character is retained.

Return value: the function returns str if successful and a null pointer if an error occurs.
You can't use an !=EOF check here, as we're not reading one character at a time (but you can use feof).

Example 2.26
Create a �le called my�le.txt in Notepad, include 3 lines and put tabs in the last line.

111 222 333

444 555 666

777 888 999

#include <stdio.h>
int main()

{

char c[10]; /* declare a char array */

FILE *file; /* declare a FILE pointer */

file = fopen("myfile.txt", "r");

/* open a text file for reading */

if(file==NULL)

{

printf("Error: can't open file.\n");
/* fclose(file); DON'T PASS A NULL POINTER TO fclose !! */

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

147

return 1;

}

else

{

printf("File opened successfully. Contents:\n\n");

while(fgets(c, 10, file)!=NULL) {

/* keep looping until NULL pointer... */

printf("String: %s", c);

/* print the file one line at a time */

}

printf("\n\nNow closing file...\n");
fclose(file);

return 0;

}

}

Output:

File opened successfully. Contents:

String: 111 222 3String: 33

String: 444 555 6String: 66

String: 777 888 9String: 99

Now closing file...

The main area of focus is the while loop - notice how I performed the check for the return of a NULL
pointer. Remember that passing in char * variable, c as the �rst argument assigns the line read into c, which
is printed o� by printf. We speci�ed a maximum number of characters to be 10 - we knew the number of
characters per line in our text �le is more than this, but we wanted to show that fgets reads 10 characters
at a time in this case.

Notice how fgets returns when the newline character is reached - this would explain why 444 and 777
follow the word "String". Also, the tab character, \t, is treated as one character.

2.8.2.3.6 Other function:

2.8.2.3.6.1 fseek() function

int fseek (FILE *fp, long int offset, int origin);

In the above prototype, there are two arguments:

• fp: Pointer to a FILE object that identi�es the stream.
• o�set: Number of bytes to o�set from origin.
• If o�set >= 0: set the position indicator toward to the end of �le,
• If o�set < 0: set the position indicator toward to the beginning of �le.
• origin: Position from where o�set is added. It is speci�ed by one of the following constants de�ned in

<cstdio>:

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

148 CHAPTER 2. THE C PROGRAMMING LANGUAGES

Constant Value Meaning

SEEK_SET 0 Beginning of �le

SEEK_CUR 1 Current position of the �le pointer

SEEK_END 2 End of �le

Table 2.28

This function sets the position indicator associated with the fp to a new position de�ned by adding o�set
to a reference position speci�ed by origin. The End-of-File internal indicator of the �le is cleared after a call
to this function.

Return Value: If successful, the function returns a zero value. Otherwise, it returns nonzero value.

Example 2.27

#include <stdio.h>
int main ()

{

FILE * fp;

fp = fopen ("myfile.txt" , "w");

fputs ("This is an apple." , fp);

fseek (fp , -8 , SEEK_END);

fputs (" sam" , fp);

fclose (fp);

return 0;

}

After this code is successfully executed, the �le my�le.txt contains:

This is a sample.

Example 2.28

#include <stdio.h>
int main ()

{

FILE * fp;

fp = fopen ("myfile.txt" , "w");

fputs ("This is an apple." , fp);

fseek (fp , 9 , SEEK_SET);

fputs (" sam" , fp);

fclose (fp);

return 0;

}

After this code is successfully executed, the �le my�le.txt contains:

This is a sample.

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

149

2.8.2.3.6.2 rewind() function

void rewind (FILE *fp);

This function sets the current position indicator associated with fp to the beginning of the �le. A call to
rewind is equivalent to:

fseek (fp, 0, SEEK_SET);

except that, unlike fseek, rewind clears the error indicator.
On streams open for update (read+write), a call to rewind allows to switch between reading and writing.

Example 2.29

#include <stdio.h>
#include <conio.h>
int main ()

{

char str [80];

int n;

FILE * fp;

fp = fopen ("myfile.txt","w+");

for (n='A' ; n<='Z' ; n++)

fputc (n, fp);

rewind (fp);

n=0;

while (!feof(fp))

{

str[n]= fgetc(fp);

n++;

}

fclose (fp);

printf ("I have read: %s \n",str);
getch();

return 0;

}

A �le called my�le.txt is created for reading and writing and �lled with the alphabet. The �le is then
rewinded, read and its content is stored in a bu�er, that then is written to the standard output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Example 2.30

#include <stdio.h>
int main()

{

FILE *file;

char sentence[50];

int i;

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

150 CHAPTER 2. THE C PROGRAMMING LANGUAGES

file = fopen("sentence.txt", "w+");

/* we create a file for reading and writing */

if(file==NULL) {

printf("Error: can't create file.\n");
return 1;

}

else {

printf("File created successfully.\n");

printf("Enter a sentence less than 50 characters: ");

gets(sentence);

for(i=0 ; sentence[i] ; i++) {

fputc(sentence[i], file);

}

rewind(file); /* reset the file pointer's position */

printf("Contents of the file: \n\n");

while(!feof(file)) {

printf("%c", fgetc(file));

}

printf("\n");
fclose(file);

return 0;

}

}

Output depends on what you entered. First of all, we stored the inputted sentence in a char array, since
we're writing to a �le one character at a time it'd be useful to detect for the null character. Recall that the
null character, \0, returns 0, so putting sentence[i] in the condition part of the for loop iterates until the null
character is met.

Then we call rewind, which takes the �le pointer to the beginning of the �le, so we can read from it. In
the while loop we print the contents a character at a time, until we reach the end of the �le - determined by
using the feof function.

Note that it is essential to have the include �le stdio.h referenced at the top of your program in order
to use any of these functions: fscanf(), fgets(), fgetc(), �ush(), fprintf(), fputs(), fputc(), feof(), fseek() và
rewind().

2.8.2.3.6.3 EOF and errors

When a function returns EOF (or, occasionally, 0 or NULL, as in the case of fread and fgets respectively),
we commonly say that we have reached �end of �le� but it turns out that it's also possible that there's been
some kind of I/O error. When you want to distinguish between end-of-�le and error, you can do so with the
feof and ferror functions. feof(fp) returns nonzero (that is, �true�) if end-of-�le has been reached on the �le
pointer fp, and ferror(fp) returns nonzero if there has been an error.

Notice feof returns nonzero if end-of-�le has been reached. It does not tell you that the next attempt to
read from the stream will reach end-of-�le, but rather that the previous attempt (by some other function)

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

151

already did. (If you know Pascal, you may notice that the end-of-�le detection situation in C is therefore
quite di�erent from Pascal.) Therefore, you would never write a loop like

while(!feof(fp))

fgets(line, max, fp);

Instead, check the return value of the input function directly:

while(fgets(line, max, fp) != NULL)

With a very few possible exceptions, you don't use feof to detect end-of-�le; you use feof or ferror to
distinguish between end-of-�le and error. (You can also use ferror to diagnose error conditions on output
�les.)

Since the end-of-�le and error conditions tend to persist on a stream, it's sometimes necessary to clear
(reset) them, which you can do with clearerr(FILE *fp).

What should your program do if it detects an I/O error? Certainly, it cannot continue as usual; usually,
it will print an error message. The simplest error messages are of the form

fp = fopen(filename, "r");

if(fp == NULL)

{

fprintf(stderr, "can't open file\n");
return;

}

or

while(fgets(line, max, fp) != NULL)

{

... process input ...

}

if(ferror(fp))

fprintf(stderr, "error reading input\n");

or

fprintf(fp, "%d %d %d\n", a, b, c);

if(ferror(fp))

fprintf(stderr, "output write error\n");

Error messages are much more useful, however, if they include a bit more information, such as the name of
the �le for which the operation is failing, and if possible why it is failing. For example, here is a more polite
way to report that a �le could not be opened:

#include <stdio.h> /* for fopen */

#include <errno.h> /* for errno */

#include <string.h> /* for strerror */

fp = fopen(filename, "r");

if(fp == NULL)

{

fprintf(stderr, "can't open %s for reading: %s\n",
filename, strerror(errno));

return;

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

152 CHAPTER 2. THE C PROGRAMMING LANGUAGES

errno is a global variable, declared in <errno.h>, which may contain a numeric code indicating the reason
for a recent system-related error such as inability to open a �le. The strerror function takes an errno code
and returns a human-readable string such as �No such �le� or �Permission denied�.

An even more useful error message, especially for a �toolkit� program intended to be used in conjunction
with other programs, would include in the message text the name of the program reporting the error.

2.8.2.4 Access to Binary Files

2.8.2.4.1 Write data to binary �les

size_t fwrite(void *buf, size_t sz, size_t n, FILE *fp)

This function writes to �le associated with fp, num number of objects, each object size bytes long, from the
bu�er pointed to by bu�er.

Return value: It returns the number of objects written. This value will be less than num only if an
output error as occurred.

The void pointer is a pointer that can point to any type of data without the use of a TYPE cast (known
as a generic pointer). The type size_t is a variable that is able to hold a value equal to the size of the largest
object surported by the compiler.

As a simple example, this program write an integer value to a �le called MYFILE using its internal,
binary representation.

#include <stdio.h> /* header file */

#include <stdlib.h>
void main(void)

{

FILE *fp; /* file pointer */

int i;

/* open file for output */

if ((fp = fopen("myfile", "w"))==NULL){

printf("Cannot open file \n");
exit(1);

}

i=100;

if (fwrite(&i, 2, 1, fp) !=1){

printf("Write error occurred");

exit(1);

}

fclose(fp);

}

2.8.2.4.2 Read data from binary �les

size_t fread(void *buf, size_t sz, size_t n, FILE *fp)

fread reads up to n objects, each of size sz, from the �le speci�ed by fp, and copies them to the bu�er pointed
to by buf. It reads them as a stream of bytes, without doing any particular formatting or other interpretation.
(However, the default underlying stdio machinery may still translate newline characters unless the stream is
open in binary or "b" mode).

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

153

Return value: returns the number of items read. It returns 0 (not EOF) at end-of-�le.

Example 2.31

#include <stdio.h>
int main() {

FILE *file;

char c[30]; /* make sure it is large enough to hold all the data! */

char *d;

int n;

file = fopen("numbers.txt", "r");

if(file==NULL) {

printf("Error: can't open file.\n");
return 1;

}

else {

printf("File opened successfully.\n");

n = fread(c, 1, 10, file); /* passing a char array,

reading 10 characters */

c[n] = '\0'; /* a char array is only a

string if it has the

null character at the end */

printf("%s\n", c); /* print out the string */

printf("Characters read: %d\n\n", n);

fclose(file); /* to read the file from the beginning, */

/* we need to close and reopen the file */

file = fopen("numbers.txt", "r");

n = fread(d, 1, 10, file);

/* passing a char pointer this time - 10 is irrelevant */

printf("%s\n", d);

printf("Characters read: %d\n\n", n);

fclose(file);

return 0;

}

}

Output:

File opened successfully.

111

222

33

Characters read: 10

111

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

154 CHAPTER 2. THE C PROGRAMMING LANGUAGES

222

333

444

5ive

Characters read: 10

The above code: passing a char pointer reads in the entire text �le, as demonstrated. Note that the number
fread returns in the char pointer case is clearly incorrect. This is because the char pointer (d in the example)
must be initialized to point to something �rst.

An important line is: c[n] = '\0'; Previously, we put 10 instead of n (n is the number of characters read).
The problem with this was if the text �le contained less than 10 characters, the program would put the null
character at a point past the end of the �le.

There are several things you could try with this program:

• After reading the memory allocation section, try allocating memory for d using malloc() and freeing
it later with free().

• Read 25 characters instead of 10: n = fread(c, 1, 25, �le);
• Not bother adding a null character by removing: c[n] = '\0';
• Not bother closing and reopening the �le by removing the fclose and fopen after printing the char

array.

Binary �les have two features that distinguish them from text �les: You can jump instantly to any record in
the �le, which provides random access as in an array; and you can change the contents of a record anywhere
in the �le at any time. Binary �les also usually have faster read and write times than text �les, because a
binary image of the record is stored directly from memory to disk (or vice versa). In a text �le, everything
has to be converted back and forth to text, and this takes time.

Besides reading and writing �blocks� of characters, you can use fread and fwrite to do �binary� I/O. For
example, if you have an array of int values:

int array[N];

you could write them all out at once by calling

fwrite(array, sizeof(int), N, fp);

This would write them all out in a byte-for-byte way, i.e. as a block copy of bytes from memory to the
output stream, i.e. not as strings of digits as printf %d would. Since some of the bytes within the array of
int might have the same value as the \n character, you would want to make sure that you had opened the
stream in binary or "wb" mode when calling fopen.

Later, you could try to read the integers in by calling

fread(array, sizeof(int), N, fp);

Similarly, if you had a variable of some structure type:

struct somestruct x;

you could write it out all at once by calling

fwrite(&x, sizeof(struct somestruct), 1, fp);

and read it in by calling

fread(&x, sizeof(struct somestruct), 1, fp);

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

155

2.8.2.5 Close Files

The funtion for closing a �le :

int fclose(FILE* fp);

This function closes the �le associated with the fp and disassociates it. All internal bu�ers associated with
the �le are �ushed: the content of any unwritten bu�er is written and the content of any unread bu�er is
discarded. Even if the call fails, the fp passed as parameter will no longer be associated with the �le.

Return value: If the �le is successfully closed, a zero value is returned.

Example 2.32

#include <stdio.h>
int main ()

{

FILE * fp;

fp = fopen ("myfile.txt","wt");

fprintf (fp, "fclose example");

fclose (fp);

return 0;

}

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

156 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

C computer science, � 1.1(1)

D data, � 1.1(1)

I information, � 1.1(1)

information technology, � 1.1(1)

K knowledge, � 1.1(1)

S struct, 129, 129

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

ATTRIBUTIONS 157

Attributions

Collection: Introduction to Computer Science
Edited by: Huong Nguyen
URL: http://cnx.org/content/col10776/1.1/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Basic concepts"
By: Huong Nguyen
URL: http://cnx.org/content/m27715/1.1/
Pages: 1-5
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Data Representation in a Computer"
By: Huong Nguyen
URL: http://cnx.org/content/m27737/1.1/
Pages: 5-20
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Computer Systems"
By: Huong Nguyen
URL: http://cnx.org/content/m27733/1.1/
Pages: 20-38
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Operating Systems"
By: Huong Nguyen
URL: http://cnx.org/content/m30793/1.1/
Pages: 38-61
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Computer Networks"
By: Huong Nguyen
URL: http://cnx.org/content/m27727/1.1/
Pages: 61-64
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction to C"
By: Huong Nguyen
URL: http://cnx.org/content/m27752/1.1/
Pages: 65-75
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

158 ATTRIBUTIONS

Module: "Data Types and Expressions"
By: Huong Nguyen
URL: http://cnx.org/content/m27741/1.1/
Pages: 76-89
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Control Flow"
By: Huong Nguyen
URL: http://cnx.org/content/m27773/1.1/
Pages: 89-100
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Pointers and Arrays"
By: Huong Nguyen
URL: http://cnx.org/content/m27769/1.1/
Pages: 100-116
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Functions"
By: Huong Nguyen
URL: http://cnx.org/content/m27749/1.1/
Pages: 116-124
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Strings"
By: Huong Nguyen
URL: http://cnx.org/content/m27761/1.1/
Pages: 124-128
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Structures"
By: Huong Nguyen
URL: http://cnx.org/content/m27764/1.1/
Pages: 128-136
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Module: "Files"
By: Huong Nguyen
URL: http://cnx.org/content/m27743/1.1/
Pages: 136-155
Copyright: Huong Nguyen
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col10776/1.1>

Introduction to Computer Science
Basic concept of computer science The C programming language

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

