
Stephen Davies, Ph.D.
University of Mary Washington

MANUAL
INSTRUCTION

BALL
CRYSTAL

THE

INTRODUCTION TO DATA SCIENCE
VOLUME ONE:

The Crystal Ball Instruction Manual
Volume One: Introduction to Data Science

version 1.1

Stephen Davies, Ph.D.
Computer Science Department
University of Mary Washington

1

Copyright © 2021 Stephen Davies.

University of Mary Washington
Department of Computer Science
James Farmer Hall
1301 College Avenue
Fredericksburg, VA 22401

Permission is granted to copy, distribute, transmit and adapt this
work under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License:

http://creativecommons.org/licenses/by-sa/4.0/

If you are interested in distributing a commercial version of this
work, please contact the author at stephen@umw.edu.

The LATEXsource for this book is available from: https://github.
com/rockladyeagles/crystal-ball-1.

Cover art copyright © 2020 Elizabeth M. Davies.

http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/rockladyeagles/crystal-ball-1
https://github.com/rockladyeagles/crystal-ball-1

Contents

Contents i

1 Introduction 1

2 A trip to Jupyter 9

3 Three kinds of atomic data 13

4 Memory pictures 25

5 Calculations 31

6 Scales of measure 43

7 Three kinds of aggregate data 53

8 Arrays in Python (1 of 2) 61

9 Arrays in Python (2 of 2) 73

10 Interpreting Data 89

11 Assoc. arrays in Python (1 of 3) 103

12 Assoc. arrays in Python (2 of 3) 109

13 Assoc. arrays in Python (3 of 3) 123

14 Loops 135

i

ii CONTENTS

15 EDA: univariate 145

16 Tables in Python (1 of 3) 169

17 Tables in Python (2 of 3) 177

18 Tables in Python (3 of 3) 187

19 EDA: bivariate (1 of 2) 193

20 EDA: bivariate (2 of 2) 201

21 Branching 211

22 Functions (1 of 2) 223

23 Functions (2 of 2) 235

24 Recoding and transforming 243

25 Machine Learning: concepts 255

26 Classification: concepts 261

27 Decision trees (1 of 2) 269

28 Decision trees (2 of 2) 275

29 Evaluating a classifier 289

Chapter 1

Introduction

If this marks your first exposure to the new and exciting discipline
of data science, you occupy an enviable position. Still in front of
you is all the cool stuff, even the first few sparks of magic when you
learn how to plug data into electrical sockets, perform automated
prediction, and write the first gems of code to probe the depths of
an interesting data set. I’m a bit jealous, tbh, but am also excited
to explore it all again with you, which is the next best thing!

This field has changed the world like hardly any other has, and
on an incredibly short time scale, too. Just a couple decades ago,
businesses and organizations were routinely making major decisions
based on gut feelings and anecdotal observations. Doctors eyeballed
sets of symptoms and diagnosed patients largely based on what con-
ditions they themselves had seen before, or seen recently. Online
sellers gave product recommendations that made sense to them,
completely missing patterns and trends that would become appar-
ent if the characteristics and purchasing patterns of past customers
were taken into account.

Part of the reason decision makers made these suboptimal choices
was because it wasn’t yet clear how much punch data science would
pack. Another reason was that the technology wasn’t there yet: the
processing power and storage capacity to work with extremely large
data sets wasn’t commonly available, and of course the data itself
hadn’t all been gathered yet. No more! All these parts are here

1

2 CHAPTER 1. INTRODUCTION

now. And somewhat incredibly, they’re all at your disposal for low
(or even no) cost.

This is the era of data science. If you want to understand and
make an impact on your world, I can honestly think of no better
field to dive into than this one, no matter what your sphere of
interest. The ability to command these techniques and tools gives
you both great insight and great power to influence how life on
planet Earth proceeds from this day forward.

1.1 Defining Data Science

When people ask me what data science is, here’s my go-to defi-
nition: deriving knowledge from data. But interpreting that
phrase entails dissecting the difference between “knowledge” and
“data,” two related but different terms. And that brings me to the
data-to-wisdom hierarchy, depicted in Figure 1.1. Let’s break
it down.

Figure 1.1: The data-to-wisdom hierarchy.

1.1. DEFINING DATA SCIENCE 3

The real world

Ultimately, what we’re interested in is not data, but aspects of
the real world – album sales and video views, stock prices and
employment rates, hurricane trajectories and virus hot spots, or
whatever. Data science can’t really get off the ground until some
sort of data acquisition takes place that records measurements of
the real world in electronic form.

This sounds obvious, but it’s important to keep in mind, actually.
No matter how much time we spend working with data, it’s never
the data that actually matters – it’s the real-world phenomenon the
data represents. It might seem strange to say that “data” is merely
incidental to a data scientist, but it’s true. And I’ve definitely seen
more than one data scientist get so locked on to the data that they
forget this basic truth.

One important observation is that decisions about exactly which
data to acquire from the real world are often crucial in how things
are interpreted later on. To take an example close to home, let’s say
we’re gathering information on college professors so we can gauge
which universities have the highest performing faculty, and how this
might be changing over the years. We choose some representative
set of criteria to measure for each faculty member to get a rough
assessment of their performance. Let’s say we choose three things:
the number of research papers the professor publishes each year,
the total amount of research funding they’ve been granted, and the
average student evaluation score of the courses they teach. That
seems like a good first cut at assessing “faculty performance.” We
then go on our merry data science way, finding correlations, making
data visualizations, and drawing conclusions.

This is all fine and dandy, provided we always keep in mind that
it was those three qualities, and only those three, that we gathered
in the first place. If our study gains any traction, and university
professors find they have a vested interest in being ranked high in
our yearly study, we’ll discover that they act to maximize only the
categories that are being collected. We didn’t gather data on how
many university committees they served on, or how many indepen-
dent studies they supervised, or how many advisees they had, etc.

4 CHAPTER 1. INTRODUCTION

Those metrics will inevitably become minimized in importance, be-
cause they weren’t part of what we lifted out of the real world and
onto the bottom rung of our lofty chain.

The moral is: what we measure matters, often more than we real-
ize. Our country’s GDP and the Dow Jones Industrial Average are
easy things to quantify, and so we often do. And thus they gain
great importance in analyses of the economy. But are they actually
the most important indicators? Does focusing on them leave out
other, perhaps more vital, benchmarks? I’ll just leave you with that
question for now.

Data

Have you ever gotten blood work done, say for an annual physical?
I have. I like to look over the numbers when the doctor hands
me the results, just to chuckle and wonder what they all mean.
To me, a non-physician, they’re all pretty much gobbledy-gook.
They tell me my TBC is 4.93 x10E6/µL, that I have 5.7 Absolute
Neutrophils, and a slightly out-of-range NT-proBNP (just 53.49
pg/mL, whatever the heck that means).

When I use the word data in the context of the hierarchy, this
is what I mean: recorded measurements, often (but not always)
quantitative, that have not yet been interpreted. They may be
very precise, but they’re also quite meaningless without the context
in which to understand them. They’d even be meaningless to a
physician if I didn’t provide the labels; try telling your doctor that
you have 4.93 “something” and see whether he/she freaks out.

The good news is that when we’re at the data stage of the hierarchy,
we at least have the stuff in an electronic form so we can start to
do something with it. We also often make choices at this stage
about how to organize the data, choosing the appropriate type of
atomic and/or aggregate data structures that we’ll discuss in detail
in Chapters 3 and beyond. This will allow us to bring our analysis
equipment to bear on the problem in powerful ways.

1.1. DEFINING DATA SCIENCE 5

Information

Data becomes information when it informs us of something; i.e.,
when we know what it means. Getting large amounts of data or-
ganized, formatted, and labeled the right way are jobs for the data
scientist, since turning that morass into useful knowledge is impos-
sible without those steps. When the aspects of the real world that
we’ve collected are properly structured and conceptually meaning-
ful, we’re in business.

Knowledge

Now knowledge is where the real action is. As shown in Figure 1.1,
knowledge consists of generalizable truths.

Here’s what I mean. Information is about specific individuals or
occurrences. When we say “Chandra is a female bank teller, and
earns $48,000 a year,” or “Alex is a male bank teller, and earns
$69,000 a year,” we have in our information repository some indi-
vidual facts. They can be looked up and consulted when necessary,
as you’ll learn in the first part of this book.

But if we say “women make less money than men do, even at the
same jobs,” we’re in a different realm entirely. We have now gen-
eralized from specific facts to more wide-reaching tendencies. In
the language of our discipline, we’ve moved from information to
knowledge.

Properly gleaning knowledge from information is a trickier busi-
ness than interpreting individual data points. There are established
rules, some of them mathematical, for determining when an appar-
ent pattern is actually reliable, what kinds of relationships can be
detected with data, whether a relationship is causal, and so forth.
We’ll build some important foundations with this kind of reason-
ing in this Crystal Ball volume and its follow-on companion. For
now, I only want to make the point that knowledge – as opposed to
mere information – opens up a whole new world of understanding.
No longer is the world limited to a chaotic collection of individual
observations: we can now begin to understand the general ways in
which the world works...and perhaps even to change them.

6 CHAPTER 1. INTRODUCTION

Wisdom

Wisdom is the gold standard. It represents what we do with our
knowledge. Let’s say we indeed determine that on average men are
paid higher than women in our country, even for the same jobs.
What do we do with that realization? Is it okay? Do we want to
try and fix it, and if so, how? With laws? Education? Government
subsidies? Revolution?

You’ll remember my definition of Data Science on p. 2: deriving
knowledge from data. This implies that the “wisdom” level of the
hierarchy is really outside the discipline, and belongs to other dis-
ciplines instead. And that’s partially true: in some sense, the data
scientist’s job stops when the deep truths about the real world are
ferreted out and illustrated, leaving it to CEOs, directors, and other
policy makers to act on them. But the data scientist is often in-
volved here too, for a simple reason: a decision maker wants to
know what’s likely to happen if a particular policy is implemented.
Most non-trivial interventions will have results that are hard to pre-
dict in advance, as well as unintended side effects. One set of tools
in the data scientist’s toolkit is for making principled, calculated
predictions about such things, as well as quantifying the level of
uncertainty in the predictions. Sometimes, the technique of sim-
ulation is used – carrying out experiments on virtual societies or
systems to see the likely aggregate effects of different interventions.
It’s like having a high-dimensional, multi-faceted crystal ball that
lets you play out various scenarios to their logical conclusions.

Starting with the rough and tumble real world and helping produce
wise decisions about how humankind can deal with it all: that’s
the grand promise of the data science enterprise. And those are the
mighty waters you’re about to dip your toes in! I hope you’ll find
it as exhilarating as I do.

1.2 A word of warning

Before we dive into the nitty gritty, let me leave you with one
more general thought. It’s actually an application of something

1.2. A WORD OF WARNING 7

Spiderman once said: “with great power comes great responsibility.”

Here’s the deal. The skills you’ll learn in this book are so powerful
and (still!) so rare, that when you demonstrate them, people will
think you can walk on water. If you continue in the discipline, you’ll
become highly sought-after (and well paid). People will constantly
be asking you to work with new data, to produce plots, predictions,
and insights, and basically to do your magic. You’ll be treated as
a guru: the oracle people go to when they want the scoop.

This is ultra-cool, but also dangerous. Why dangerous? One simple
reason: because when you make a data-related claim, people will
believe you. Pretty much unquestioningly. Most of your colleagues
won’t have the expertise or understanding to double-check your
snazzy results. And it wouldn’t occur to them to do that anyway
– after all, you’re the wizard.

The truth of the matter is that data science lives on the knife edge
of uncertainty. With our crystal ball, we can make non-obvious
assertions about the past or present and even predict the future, but
as with all “knowledge,” we must always hold it tentatively. We may
be 95% confident that men are paid more than women...but that’s
only 95% confidence, not 100%. We may have reason to believe
that raising the minimum wage in a city will decrease poverty by
3%...but there’s a 1 in 20 chance that it might decrease it by as
much as 6%, or even increase it by 1%.

The abiding principle is that you should always be forthright about
the limits of your bold claims, the caveats behind your beautiful
plots, and the level of likelihood that your hypotheses will turn out
to be wrong. Admittedly, doing so will make you seem a little less
magic. There are lots of talking heads on television who deliberately
obscure the level of uncertainty in their analyses so that they seem
more certain (and more impressive) than they really are. To be
responsible data scientists, though, we’re going to do the Spiderman
thing and be up front and transparent about exactly what we’ve
found, and what we might be missing.

Believe me, this will make you powerful enough!

Chapter 2

A trip to Jupyter

Python is a ridiculously popular language for programming and
data science (currently the third most widely used in the world1)
which is one of many reasons we’re using it for this course. The
language itself is different from the programming environment
used to write code in it, just as “English” is different from “Microsoft
Word” and “Google Docs.” A programming environment is just a
fancy name for a tool or application used to write programs. At a
minimum, it must include a way to edit (write and revise) code,
and a way to execute (run) it.

There are many different programming environments data scientists
use to write Python code, just as there are many different word
processing apps people use to write English. The choice largely
comes down to personal preference. Some use full-blown IDEs
(“integrated development environments”) like Spyder or Atom; some
use text-based tools like Notepad++ or vim. In this class, we’re
going to use the friendly and minimalistic “Jupyter Notebooks”
environment since it’s appropriate for an intro experience.

2.1 Jupyter Notebooks

The concept of a Jupyter Notebook is simple: it’s a Web page with
editable “cells.” Each cell is a little text window you can type in.

1See https://www.tiobe.com/tiobe-index/.

9

https://www.tiobe.com/tiobe-index/

10 CHAPTER 2. A TRIP TO JUPYTER

There are three kinds of cells in Jupyter Notebooks:

Raw. “Raw” is dumb. Never use it.

Markdown. “Markdown” cells are for English text, not Python
code. They’re mostly used to describe and annotate what
you’re doing in the code cells, like a running commentary. You
can type plain-ol’ text in a Markdown cell, plus various cutesy
formatting adornments like boldface (putting double-splats
(**) around a word or phrase), italics (single splats), outline
headings (prefacing a line with one or more hashtags (like #
or ###), and so forth.2 When you type in a Markdown cell,
you see the raw text and formatting; to actually get Jupyter
to render your cells and make them pretty, you choose “Run
All” from the “Cell” menu.

Code. The most important cells are “Code” cells which contain
(duh) code. When executed (again, by choosing “Run All”
from the “Cell” menu) they actually carry out the Python in-
structions you have typed in that cell, and display any results.

By the way, a common snafu is to somehow accidentally click in a
way that changes the type of a cell from “Code” to one of the other
types. If you do this, the Python code in that cell won’t execute
until you change the type back to “Code” (more on this below).

Figure 2.1 shows a Jupyter Notebook hosted by the CoCalc cloud
computing platform, which we’ll use this semester. It has two cells,
one Markdown and one Code. Note carefully the cell-type drop-
down which is kind of hidden in the middle of the page: it currently
reads “Code” because the second cell is the one that’s highlighted.
(If we clicked to highlight and edit the top cell, that dropdown
would change to “Markdown.”)

The top figure shows the two cells before the user has done a “Run
All” from the “Cell” menu: all the Markdown is unrendered (see the
literal splats and hashtags) and the code is just sitting there. After

2For a complete list of formatting options, see https://github.com/
adam-p/markdown-here/wiki/Markdown-Cheatsheet.

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

2.1. JUPYTER NOTEBOOKS 11

Figure 2.1: A Jupyter Notebook with one Markdown cell and one Code
cell. In the top image, the two cells have been edited but not yet “run” –
hence the Markdown formatting is unrendered and the code has not been
executed. The bottom pane shows both cells after the use has chosen “Run
All” from the “Cell” menu.

“Run All,” the picture changes: you see the formatted message in
the top cell, and the output of the Python code snippet after it
runs. (The latter is easy to miss; stare at that bottom picture and

12 CHAPTER 2. A TRIP TO JUPYTER

find the “Our country is 245 years old!” message. That’s the
“output.”) We haven’t yet covered what that Python code means
(that’s the main subject of this book) but you can probably guess
some of what it’s doing.

2.2 Code and output

Incredibly, that’s about it. Everything else in this book is going to
concern what to type in those Code cells and how to interpret its
output.

From now on, whenever I give example Python code in this book,
I’ll write it in a box like this:

founding = 1776
usa_age = 2021 - founding
print("Our country is {} years old!".format(usa_age))

That box means “this stuff goes in a Code cell of a Notebook.”

When I write the corresponding output (i.e., what gets printed on
the page immediately below the code cell when “Run All” is chosen
from the “Cell” menu), I’ll write it like this:

Our country is 245 years old!

That vertical bar means “this stuff is the printed result of executing
the code cell.”

Easy enough. Onward!

Chapter 3

Three kinds of atomic data

3.1 Atomic data

When we say that some data is “atomic,” we don’t mean it’s ra-
dioactive; we mean it’s indivisible.

The ancients spoke of “atoms” as the smallest possible bits of mat-
ter. If you divide up any physical object – say, an apple – into
parts, you get its components: a stalk, a stem, skin, seeds, and
the sweet juicy stuff. Cut up any of those pieces with a knife and
you get smaller pieces. If you continue to split and split and split,
philosophers like Democritus reasoned, you’ll eventually get to tiny
indivisible bits that cannot be further dissected. This is where the
physical world bottoms out at the finest degree of granularity.

Similarly, a piece of atomic data is typically treated as an entire
unit, not as something with internal structure that can be broken
down. In the next chapter we’ll learn about various ways that
these atoms of data can be strung together and organized into larger
wholes; for now, though, we’re just looking at the atoms themselves.

3.2 Environments and variables

A data analysis program – of which we will write many in this
course – makes use of an environment as it runs. “Environment”
just means “all the data that is currently in view, and which the

13

14 CHAPTER 3. THREE KINDS OF ATOMIC DATA

program can access.”1 The environment consists of variables, each
of which (usually) has a name and a value. For example, we might
have a variable named age whose value is 21, and a variable named
slogan whose value is "Finger lickin’ good".

Each variable in the environment must have a distinct name (i.e.,
no two variables can share the same name). Also, importantly, the
reason these building blocks are called “variables” is that their value
can change as the program executes. Although we may initially
create an age variable with the value 21, later on in the program
the variable’s value might change to 22, or 50, or 0. The variable’s
name never changes, though.

3.3 Atomic data types

There’s one other thing that a variable has in addition to its name
and value: a type.2 In a programming language like Python, every
piece of data has a specific type, which is necessary for determining
how it behaves and what all you can do to it. A question you should
ask yourself a lot is: “okay, I’ve got a variable in my environment
called x...now what is its type?” You might have guessed (correctly)
that our age and slogan variables from the previous section are of
different types: one is a number, and the other is a phrase.

In this course, we’ll principally deal with three types of atomic data,
all of which will be familiar to you.

Whole numbers

One very common type of data is whole numbers, or integers. These
are usually positive, but can be negative, and have no decimal point.
Things like a person’s birth year, a candidate’s vote total, or a social
media post’s number of “likes” are represented with this data type.

1Confusingly, this use of the term “environment” is different from the term
“programming environment” I introduced on p.9.

2Strictly speaking, although in languages like Java variables indeed have
types, in Python the values have types, not the variables. This distinction will
never be important for us though.

3.3. ATOMIC DATA TYPES 15

Real (fractional) numbers

You may remember from high school math that the so-called “real
numbers” include not only integers, but also numbers with digits
after the decimal point. This type can therefore be used to store
interest rates, temperature readings, and average movie ratings on
a 1-to-5 scale.

Since all whole numbers are themselves real numbers, you might
wonder why we bother to define two different types for these. Why
not just give both kinds of variables the same real number type?
Basically, the answer is that something “feels wrong” about that
to the Data Science community. A Facebook user might have 240
friends, or 241, but it would never make sense for her to have 240.3
friends. A consensus has thus arisen: variables that would only ever
store whole numbers really ought to be of a type that’s devoted to
only whole numbers. You can violate this convention, but you’ll be
thought weird by your fellow developers if you do so.

Text

Lastly, some values obviously aren’t numeric at all, like a customer’s
name, a show title, or a tweet. So our third type of data is tex-
tual. Variables of this type have a sequence of characters as values.
These characters are most often English letters, but can also include
spaces, punctuation, and characters from other alphabets.

By the way, this third data type can tiptoe right up to the “atomic”
line and sometimes cross it. In other words, we will occasionally
work with text values non-atomically, by splitting them up into
their constituent words or even letters. Most of the time, though,
we’ll treat a character sequence like "Avengers: Endgame" as a
single, indivisible chunk of data in the same way we treat a number
like 42.

But what about...?

What about other things a computer can store: images, song files,
videos? It turns out that through clever tricks, all these kinds of
media and more can be boiled down to a large number of integers,

16 CHAPTER 3. THREE KINDS OF ATOMIC DATA

and stored in an aggregate data structure like those discussed in
the next chapter. At the atomic level, we’ll really only ever need to
deal with the three types of this section.

3.4 The three kinds in Python

Now the three kinds of atomic data described above are language-
general: this means that they’re conceptual, not tied to any spe-
cific programming language or analysis tool. Any technology used
for Data Science will have the ability to deal with those three ba-
sic types. The specific ways they do so will differ somewhat from
language to language. Let’s learn about how Python implements
them.

Whole numbers: int

One of the most basic Python data types is the “int,” which stands
for “integer.” It’s what we use to represent whole numbers.

In Python, you create a variable by simply typing its name, an
equals sign, and then its initial value, like so:

revolution = 1776

This is our first line of code3. As we’ll see, lines of code are
executed one by one – there is a time before, and a time after,
each line is actually carried out. This will turn out to be very
important. (Oh, and a “line of code” is sometimes also called a
statement.)

Python variable names can be as long as you like, provided they
consist only of upper and lower case letters, digits, and underscores.
(You do have to be consistent with your capitalization and your

3By the way, the word code is grammatically a mass noun, not a count
noun. Hence it is proper to say “I wrote some code last night,” not “I wrote
some codes last night.” If you misuse this, it will brand you as a newbie right
away.

3.4. THE THREE KINDS IN PYTHON 17

spelling: you can’t call a variable Movie in one line of code and
movie in another.) Underscores are often used as pseudo-spaces,
but no other weird punctuation marks are allowed in a variable’s
name.4

And while we’re on the subject, let me encourage you to name your
variables well. This means that each variable name should reflect
exactly what the value that it stores represents. Example: if a vari-
able is meant to store the rating (in “stars”) that an IMDB user gave
to a movie, don’t name it movie. Name it rating. (Or even bet-
ter, movie_rating.) Trust me: when you’re working on a complex
program, there’s enough hard stuff to think about without confus-
ing yourself (and your colleagues) by close-but-not-exact variable
names.5

Now remember that a variable has three things – a name, value,
and type. The first two explicitly appear in the line of code itself.
As for the type, how does Python know that revolution should be
an “int?” Simple: it’s a number with no decimal point.

As a sanity check, we can ask Python to tell us the variable’s type
explicitly, by writing this code:

type(revolution)

If this line of code is executed after the previous one is executed,
Python responds with:

int

So there you go.

Here’s another “code snippet” (a term that just means “some lines
of code I’m focusing on, which are generally only part of a larger
program”):

4Oh, and another rule: a variable name can’t start with a digit. So r2d2 is
a legal variable name, but not 007bond.

5And I fully own up to the fact that the revolution variable isn’t named
very well. I chose it to make a different point shortly.

18 CHAPTER 3. THREE KINDS OF ATOMIC DATA

revolution = 1776
moon_landing = 1969
revolution = 1917

Now if this were a math class, that set of equations would be
nonsensical. How could the same variable (revolution) have two
contradictory values? But in a program, this is perfectly legit: it
just means that immediately after the first line of code executes,
revolution has the value 1776, and moments later, after the third
line executes, its value has changed to 1917. Its value depends
entirely on “where the program is” during its execution.

Real (fractional) numbers: float

The only odd thing about the second data type in Python is its
name. In some other universe it might have been called a “real” or
a “decimal” or a “fractional” variable, but for some bizarre historical
reasons it is called a float.6

All the same rules and regulations pertain to floats as they do to
ints; the only difference is you type a decimal point. So:

GPA = 3.17
price_of_Christian_Louboutin_shoes = 895.95
interest_rate = 6.

Note that the interest_rate variable is indeed a float type (even
though it has no fractional part) because we typed a period:

6If you’re curious, this is because in computer programming parlance a
“floating-point number” means a number where the decimal point might be
anywhere. With an integer like -52, the decimal point is implicitly at the far
right-hand side of the sequence of digits. But with numbers like -5.2 or -.52 or
-.000052 or even 520000, the decimal point has “floated” away from this fixed
position.

3.4. THE THREE KINDS IN PYTHON 19

type(interest_rate)

float

Text: str

Speaking of weird names, a Python text variable is of type str,
which stands for “string.” You could think of it as a bunch of
letters “strung” together like a beaded necklace.

Important: when specifying a str value, you must use quotation
marks (either single or double). For one thing, this is how Python
know that you intend to create a str as opposed to some other
type. Examples:

slang = 'lit'
grade = "3rd"
donut_store = "Paul's Bakery"
url = 'http://umweagles.com'

Notice, by the way, that a string of digits is not the same as an
integer. To wit:

schwarzenegger_weight = 249
action_movie = "300"

type(schwarzenegger_weight)

int

type(action_movie)

str

See? The quotes make all the difference.

20 CHAPTER 3. THREE KINDS OF ATOMIC DATA

The length of a string

We’ll do many things with strings in this book. Probably the most
basic is simply to inquire as to a string’s length, or the number of
characters it contains. To do this, we enclose the variable’s name
in parentheses after the word len:

len(slang)

3

len(donut_store)

13

As we’ll see, the len() operation (and many others like it) is an
example of a function in Python. In proper lingo, when we write
a line of code like len(donut_store) we say we are “calling the
function,” which simply means to invoke or trigger it.

More lingo: for obscure reasons, the value inside the bananas (here,
donut_store) is called an argument to the function. And we say
that we “pass” one or more arguments to a function when we call
it.

All these terms may seem pedantic, but they are precise and universally-
used, so be sure to learn them. The preceding line of code can be
completely summed up by saying:

“We are calling the len() function, and passing it
the donut_store variable as an argument.”

I recommend you say that sentence out loud at least four times in
a row to get used to its rhythm.

3.4. THE THREE KINDS IN PYTHON 21

Note, by the way, that the len() function expects a str argument.
You can’t call len() with an int or a float variable as an argu-
ment:

schwarzenegger_weight = 249

len(schwarzenegger_weight)

TypeError: object of type 'int' has no len()

(You might think that the “length” of an int would be its number
of digits, but nope.)

One thing that students often get confused is the difference between
a named string variable and that of an (unnamed) string value.
Consider the difference in outputs of the following:

slang = 'lit'
len(slang)

3

len('slang')

5

In the first example, we asked “how long is the value being held
in the slang variable?” The answer was 3, since “lit” is three
characters long. In the second example, we asked “how long is
the word 'slang'?” and the answer is 5. Remember: variable
names never go in quotes. If something is in quotes, it’s being
taken literally.

22 CHAPTER 3. THREE KINDS OF ATOMIC DATA

Combining and printing variables

There’s a whole lot of stuff you can do with variables other than
just creating them. One thing you’ll want to do frequently is print
a variable, which means to dump its value to the page so you can
see it. This is easily done by calling the print() function:

print(donut_store)
print(price_of_Christian_Louboutin_shoes)
print("slang")
print(slang)

Paul's Bakery
895.95
slang
lit

Again, don’t miss the crucial difference between printing "slang"
and printing slang. The former is literal and the latter is not. In
the first of these, we’re passing the word “slang” as the argument,
not the variable slang.

Often we’ll want to combine bits of information into a single print
statement. Typically one of the variables is a string that contains
the overall message. There are several ways to accomplish this, but
the most flexible will turn out to be the .format() method.

I hate to hit you with so much new lingo. Amethod is very similar
to a function, but not exactly. The difference is in the syntax used
to call it. When you call a function (like type() or len()) you
simply type its name, followed by a pair of bananas inside of which
you put the arguments (separated by commas, if there’s more than
one). But when you “call a method,” you put a variable before a
dot (“.”) and the method name, then the bananas. This is referred
to as “calling the method on the variable.”

It sounds more confusing than it is. Here’s an example of .format()
in action:

3.4. THE THREE KINDS IN PYTHON 23

price_of_Christian_Louboutin_shoes = 895.95
message = "Honey, I spent ${} today!"
print(message.format(price_of_Christian_Louboutin_shoes))

Take note of how we write “message.format” instead of just “format”.
This is because .format() is a method, not a function. We say that
we are calling .format() “on” message, and passing price_of_
Christian_Louboutin_shoes as an argument.7 Also be sure to
notice the double bananas “))” at the end of that last line. We
need both of them because in programming, every left-banana must
match a corresponding right-banana. Since we’re calling two func-
tions/methods on one line (print() and .format()), we had two
left-bananas on that line. Each one needs a partner.

As for the specifics of how .format() works, you’ll see that the
string variable you call it on may include pairs of curlies (squiggly
braces). These are placeholders for where to stick the values of
other variables in the output. Those variables are then included
as arguments to the .format() method. The above code produces
this output:

Honey, I spent $895.95 today!

Often, instead of creating a new variable name to hold the pre-
formatted string, we’ll just print() it literally, like this:

print("Honey, I spent ${} today!".format(
price_of_Christian_Louboutin_shoes))

We’re still actually calling .format() on a variable here, it’s just
that we haven’t bothered to name the variable. Also, notice that

7Btw, in this book, whenever I refer to a method, I’ll be sure to put a
dot before its name. For example, it’s not the “format()” method, but the
“.format()” method.

24 CHAPTER 3. THREE KINDS OF ATOMIC DATA

our code was too long to fit on one line nicely, so we broke it in two,
and indented the second line to make it clear that “price_of_...”
wasn’t starting its own new line. Crucially, all the bananas are
still paired up, two-by-two, even though the left bananas are on a
different line than the corresponding right bananas.

Finally, here’s a longer example with more variables:

name = "Pedro Pascal"
num_items = 3
cost = 91.73
print("Customer {} bought {} items worth ${}.".format(name,

num_items, cost))

Customer Pedro Pascal bought 3 items worth $91.73.

You can see how we can pass more than one argument to a func-
tion/method simply by separating them with commas inside the
bananas.

Chapter 4

Memory pictures

Now that we’ve talked about the three important kinds of atomic
variables, let’s consider the question of where they live. It might
sound like a strange question. Aren’t they “in” the Jupyter Note-
book cell in which they were typed?

Actually, no. And that brings me to the first mission-critical lesson
of the semester, which is a bane to all students who don’t deeply
grasp it. The lesson is:

The code itself is only a means to an end.
The purpose of the code is to read or write
what’s in memory.

Memory is the part of the computer in which variables and their
values are stored. To use the terminology of Chapter 3, memory is
where the environment lives. It is invisible to the programmer,
but it is also very much there. The single most important trick to
learning how to write correct code is being able to summon to mind
what memory looks like at any point in time. The code you must
write is a natural consequence of that.

25

26 CHAPTER 4. MEMORY PICTURES

4.1 A picture of memory

It’s easier with pictures at first, so we’ll draw plenty of them. Our
memory pictures will have a very specific format, and this is
crucially important: don’t get creative with how things are labeled
or where things are drawn. In order for your code to work you must
have this picture exactly right. It’s not art; it’s science.

Our memory pictures will always be divided into exactly two “realms,”
one on the left and one on the right, labeled as follows:

The left column’s name should be recognizable, since that’s exactly
what we covered last chapter. The right column won’t have any-
thing in it for a couple chapters.

Writing to memory

When we create atomic variables in a Code cell, a la:

pin_count = 844
username = 'Bekka Palmer'

each one gets put on the left-hand side of the diagram as a named
box. The name of the box is the variable’s name, and the thing
inside of the box is its value.

4.1. A PICTURE OF MEMORY 27

It doesn’t matter which boxes are higher or lower on the page,
only that the names stick with their boxes and don’t get mixed up.
As a bonus, I have colored the boxes differently, indicating that
pin_count (an int) is a different type than username (a str).1

Creating more variables just adds more named boxes:

...
avg_num_impressions = 1739.3
board_name = "Things to Make"

I’m deliberately shuffling around the order of the boxes just to mess
with you. Python makes no guarantee of what “order” it will store
variables in anyway, and in reality it actually does become a big
jumbled mess like this under the hood. All Python guarantees is

1One other tiny detail you might notice: even though our code had single
quotes to delimit Bekka Palmer’s name, I put double quotes in the box in the
memory picture. This is to emphasize that no matter how you create a string
in the code – whether with single quotes or double – the underlying “thing”
that gets written to memory is the same. In fact, what’s stored are actually
the characters Bekka Palmer without the quotes. I like putting quotes in the
memory pictures, though, just to emphasize the string nature of the value.

28 CHAPTER 4. MEMORY PICTURES

that it will consistently store a name, value, and a type for each
variable.

When we change the value of a variable (rather than creating a new
one), the value in the appropriate box gets updated:

...
avg_num_impressions = 2000.97
pin_count = 845
another_board = 'Pink!'

Note carefully that the previous value in the box is completely oblit-
erated and there is absolutely no way to ever get it back. There’s
no way, in fact, to know that there even was a previous value dif-
ferent than the current one. Unless specifically orchestrated to do
so, computer programs only keep track of the present, not the past.

One other thing: unlike in some programming languages (so-called
“strongly typed” languages like Java or C++) even the type of value
that a variable holds can change if you want it to. Even though the
following example doesn’t make much sense, suppose we wrote this
code next:

...
pin_count = 999.635
username = 11

4.1. A PICTURE OF MEMORY 29

This causes not only the contents of the boxes to change, but even
their colors. The username variable was a str a moment ago, but
now it’s an int.

Reading from memory

“Reading from memory” just means referring to a variable in order
to retrieve its value. So far, we don’t know how to do much with
that other than print:

print("The {} board has {} pins.".format(another_board,
pin_count))

The Pink! board has 999.635 pins.

The important point is that the memory picture is the (only) cur-
rent, reliable record of what memory looks like at any point in a
program. Think of it as reflecting a snapshot in time: immediately
after some line of code executes – and right before the following
one does – we can consult the picture to obtain the value of each
variable. This is exactly what Python does under the hood.

I stress this point because I’ve seen many students stare at com-
plicated code and try to “think out” what value each variable will
have as it runs. That’s hard to do with anything more than a few
lines. To keep track of what-has-changed-to-what-and-when, you
really need to maintain an up-to-date list of each variable’s value
as the program executes...which is in fact exactly what the memory
picture is.

30 CHAPTER 4. MEMORY PICTURES

So if you’re trying to figure out “what will this program output if
I print the odometer variable immediately after line 12?” don’t
stare at the code and try to reconstruct its behavior from scratch.
Instead, draw a memory picture, update it accordingly as you walk
through each line of code, and then look at it for the answer.

Tip

By the way, investing in a small whiteboard and a couple of markers
is a great way to help you learn programming. They’re perfect for
drawing and updating memory pictures as they evolve.

Hopefully this chapter was straightforward. These memory pictures
will be getting increasingly complex as we learn more kinds of things
to store, however, so stay sharp!

Chapter 5

Calculations

Our discipline obviously involves a lot of computation – in fact,
I expect the first image that comes to mind when most people
hear the words “data science” is one of numerical calculation. In
this chapter, I’ll lay out the Python syntax for performing vari-
ous mathematical operations on numbers, as well as manipulating
strings. These things appear in every program, and you’ll find it
all straightforward.

And then I’ll drop a bomb on you. I’ll unveil a Python behavior
which you’ll probably find completely unexpected, which flummoxes
nearly every student who first sees it, and yet which you must un-
derstand and master to succeed in Python or any programming
language.

5.1 Mathematical operations

First, the easy part. Python has a number of built-in operators
to do the familiar math stuff. Figure 5.1 has a table of the ones
we’ll use. A few are mildly surprising (* instead of X for multi-
plication; / instead of ÷ for division, which I’ll bet you couldn’t
find on your keyboard anyway), and you have to remember to use
only bananas (not boxies [], curlies {}, or wakkas <>) for grouping
sub-expressions within a larger expression. Otherwise, it’s a piece
of cake.

31

32 CHAPTER 5. CALCULATIONS

Operator Operation
+ addition
- subtraction
* multiplication
/ division
** exponentiation (“to the power of”)
() grouping
Figure 5.1: Python’s basic math operators.

All this stuff has to appear on the right-hand side of an equals
sign, by the way, never on the left. That may seem surprising,
since in mathematics the equations “x = y + 3” and “y + 3 = x”
mean the same thing. Why does it matter which order you write
it in? The answer, you’ll recall, is that in a program the symbol
“=” doesn’t mean “is equal to” but rather “make equal to.” It’s not
an equation; it’s a command. And you can’t command “y + 3” to
be equal to anything. Therefore the only thing permitted on the
left-hand side of an equals sign is a single, plain-jane variable name.

To test your understanding of the syntax, see if you agree that the
following math expression:

gpa =
creds1 ⋅ gpts1 + creds2 ⋅ gpts2

creds1 + creds2

should look like this in Python:

gpa = (creds1 * gpts1 + creds2 * gpts2) / (creds1 + creds2)

and that this one:

a =
[x2y(4 − z) + (x + q) ⋅ y] × 215y+2z

19x3 − (yz)(y−1)2

should look like this:

5.1. MATHEMATICAL OPERATIONS 33

a = (((x**2)*y*(4-z) + (x+q)*y) * 2**(15*y+2*z)) / (19*(x**3) - (y*z)**((y-1)**2))

If so, you’re good to go. It’s tedious, but not complicated.

Python also has plenty of functions for absolute value, sine and
cosine, logarithms, square roots, and anything else you can think
of. We’ll learn all those at the proper time (or they’re all eminently
Google-able if you want to look them up now).

A common pattern: cumulative totals

Here’s a technique we’ll use over and over in our code, but which
can seem a bit jarring the first time you see it. Check out this line
of code:

balance = balance + 50

Now there is no universe where that statement is true mathemat-
ically. (Think about it: can you come up with any number that
is equal to itself plus fifty? I thought not.) But again, this is pro-
gramming, not algebra. We’re commanding the balance variable to
have a new value. And what is that new value? Simple: whatever
its previous value was, plus 50.

The net effect is to increase balance’s value by 50. Follow this:

balance = 1000
print("In July, I had ${}.".format(balance))
balance = balance + 50
print("In August, I had ${}.".format(balance))
balance = balance - 200
balance = balance + 120
print("In September, I had ${}.".format(balance))

In July, I had $1000.
In August, I had $1050.
In September, I had $970.

34 CHAPTER 5. CALCULATIONS

You get the idea. This approach will become especially useful when
we get to loops in Chapter 14, because we’ll be able to repeatedly
increment a variable’s value by a desired amount in automated
fashion.

A couple other things. First, a very common special case of the
above is to increment a variable by exactly one:

number_of_home_runs = number_of_home_runs + 1

This allows us to count the occurrences of various things: every time
somebody hits a home run (or whatever), the above line of code will
increase the appropriate counter variable’s value by one.

Second, Python has a special alternative syntax for this increment-
ing operation. It looks weird:

balance += 50
number_of_home_runs += 1

The two characters “+” and “=” (pronounced “plus-equals”) allow
us to shorthand this operation and avoid typing the variable name
twice. The above two lines of code are exact synonyms for these:

balance = balance + 50
number_of_home_runs = number_of_home_runs + 1

You can use whichever one you wish, although be aware that your
fellow programmers may well choose the former one, so you need
to understand what it means.

5.2 String operations

Text data, too, has many things that can be done to it. For now,
let’s just learn a few techniques for concatenating strings (tacking

5.2. STRING OPERATIONS 35

one onto the end of another) trimming strings (removing whites-
pace1 from the ends) and changing their case (upper/lower). See
Figure 5.2 for a list.

Method/operator Operation
+ concatenate two strings

.lstrip() remove leading whitespace

.rstrip() remove trailing whitespace
.strip() remove leading and trailing whitespace
.upper() convert to all uppercase
.lower() convert to all lowercase
.title() convert to “title case” (capitalize each word)

Figure 5.2: A few of Python’s string methods.

The plus sign is an operator, like the mathematical ones in Fig-
ure 5.1: it’s used to concatenate (append) one string to another.
Example:

x = "Lady"
y = "Gaga"
z = x + y
print(z)

LadyGaga

The second one is slapped right on the end of the first; there’s
no spaces or punctuation. If you wanted to insert a space, you’d
have to do that explicitly with a string-that-consists-of-only-a-space
(written as the three characters: quote, space, quote), like this:

first = 'Dwayne'
last = "Johnson"
full = first + ' ' + last
print(full)

1The word “whitespace” is a catch-all for spaces, tabs, newline characters,
and most anything else invisible.

36 CHAPTER 5. CALCULATIONS

Dwayne Johnson

Punctuation marks, too, have to be included literally, and it can be
tricky to get everything typed in the right way:

first = 'Dwayne'
last = "Johnson"
nick = 'The Rock'
full = first + ' "' + nick + '" ' + last
print("Don't ya just love {}?".format(full))

Don't ya just love Dwayne "The Rock" Johnson?

Stare at that line beginning with “full =” and see if you can figure
out why each punctuation mark is where it is, and why there are
spaces between some of them and not between others.

By the way, here’s a bit of a head-scratcher at first:

matriculation_year = "2021"
graduation_year = matriculation_year + 4
print("Imma graduate in {}!".format(graduation_year))

Imma graduate in 20214!

Whoa – wut? That’s a lot of tuition. The problem here is that
matriculation_year was defined as a string, not an integer (note
the quotes). So the + sign meant concatenation, not addition. Re-
member: a string-consisting-only-of-digits is not the same as a num-
ber. (If you remove the quotes from the first line, your mom will
breathe easier and you’ll get the result you expect.)

The other items in Figure 5.2 are methods: they have an initial
dot (“.”) and they must be called “on a string” (meaning, a string
variable name must immediately precede them). They also take

5.2. STRING OPERATIONS 37

no arguments, which means that a lonely, empty pair of bananas
comes after their name when they are called. Examples:

shop_title = " carl's ICE cream "
print(shop_title)
print(shop_title.strip())
print(shop_title.upper())
print(shop_title.lower())
print(shop_title.title())

carl's ICE cream
carl's ICE cream

CARL'S ICE CREAM
carl's ice cream
Carl'S Ice Cream

(You can’t see the trailing spaces in the output, but you can see
the leading ones.)

You can even combine method calls back to back like this:

print(shop_title.strip().upper())

Carl'S Ice Cream

These operations are for more than mere prettiness. They’re also
used for data cleansing, which is often needed when dealing with
messy, real-world data sets. If, say, you asked a bunch of people on a
Web-based survey which Fredericksburg ice cream store they prefer,
lots of them will name Carl’s: but they’ll type the capitalization
every which way, forget the apostrophe, clumsily add spaces to one
end (or even both, or even in the middle), yet they’ll all have in
mind the same luscious vanilla cones. One step towards conflating
all these different expressions to the same root answer would be
trimming the whitespace off the ends and converting everything to
all lower-case. More surgical operations like removing punctuation
or spaces in the middle is a bit trickier; stay tuned.

38 CHAPTER 5. CALCULATIONS

5.3 Return values

Okay, you’ve been in suspense long enough. Time for the bomb.

First, we’re going to add another phrase to our already lengthy
function-calling mantra. You’ll recall that we summarized this code
(a function call):

len(movie_title)

with this English:

“We are calling the len() function, and passing it movie_title
as an argument.”

And we summarized this code (a method call):

message.format(name, age)

with this English:

“We are calling the .format() method on the message
variable, and passing it name and age as arguments.”

Now, a third thing. We can use the equals sign with a variable
name to capture the output of the function or method, instead of
just printing it. The output of a function is called its return value.
We say that “the .upper() method returns an upper-case version
of the string it was called on.” We can capture it like this:

big_and_loud = shop_title.upper()

5.3. RETURN VALUES 39

The variable big_and_loud now holds the value "CARL'S ICE CREAM".
Functions work similarly:

width_of_sign = len(shop_title)

The width_of_sign int now has the value 40 (remember all those
extraneous spaces); if we’d trimmed first, we’d have gotten 16:

true_width_of_sign = len(shop_title.strip())
print(true_width_of_sign)

16

The bomb

I’ve probably built this up too much, but I think you’ll agree that
the following output is pretty surprising:

diva = "Ariana Grande"
diva.upper()
print("I just love {}!".format(diva))

I just love Ariana Grande!

Wait...did the “diva.upper()” part just not work? Did it get
skipped? Did we do it wrong somehow?

Even more confusing, putting the “.upper()” call directly in the
print statement seems to work...but only temporarily. Accessing
diva a moment later appears to revert it back to its old value:

diva = "Ariana Grande"
print("I just love {}!".format(diva.upper()))
print("When does the next {} album come out?".format(diva))

40 CHAPTER 5. CALCULATIONS

I just love ARIANA GRANDE!
When does the next Ariana Grande album come out?

The root cause of this and practically all perplexing Python printing
can be discovered by consulting the memory picture. Here’s how it
starts out when we first define diva:

Now say we do this:

new_var_name = diva.upper()

The result is this picture:

And now we see the reason for it all. The contents of the diva vari-
able itself are unchanged by the method call. Calling “.upper()”
on diva didn’t change the string value in diva: it merely returned
a modified copy of the string.

Think of it this way: if I asked you, “what is your name in Pig
Latin?” and you told me, that would not intrinsically change your
actual name to be in Pig Latin. You would simply be “returning”
to me the Pig Latin version of it in response to my query.

5.3. RETURN VALUES 41

You could argue this behavior of Python’s is dumb, or at best mis-
leading, and I’m actually inclined to agree with you in this case.
But of course beggars can’t be choosers: someone took the time to
write the .upper() method for us, so if we want to take advantage
of it we have to use his/her owner’s manual. And the fact is that
many (perhaps even most) Python functions/methods – including
many of the ones from Pandas, which we’ll use extensively – are
coded with this style: not actually modifying the variables they are
passed, but instead returning to you a modified copy which you
must store.

Now given that this is the case, it would at least be nice if I could
tell you that it always, consistently worked this way. Then you
could simply accept it and get used to it. Alas, no. There are
functions/methods (lots of them) which do modify a parameter or
the variable they were called on. So sometimes, our naïve approach
of calling the method and expecting the variable to change is exactly
what we need to do. The bottom line is: there’s no way of knowing
without being told, or else reading the documentation. We’ll learn
how to do the latter in a future chapter. For now, I’m simply
telling you for the record that the methods in Figure 5.2 are all of
the “return a modified copy” type, and giving you a heads up that
both styles of method do exist out there in abundance.

A couple more things. First, as a corollary of the above, realize
that the following statement (on a line by itself) is officially 100%
useless:

name_of_pet.lstrip()

You called the .lstrip() method, and then....did nothing with the
return value. If you don’t store it in a variable – or else do something
with it right away like print it before it slips out of your fingers –
it’s irrevocably lost: it doesn’t even show up on the memory picture
because there’s no variable name. (Think about that.)

Second, note the following pattern which is very often used:

42 CHAPTER 5. CALCULATIONS

name_of_pet = name_of_pet.lstrip()

Here, we’re calling .lstrip() on the name_of_pet variable and
then storing the return value back in the name_of_pet variable. This
might be what you thought would have happened in the first place
– the author of the previous, useless line, probably wanted the vari-
able itself to permanently have its leading spaces removed. Simply
calling .lstrip() on the variable won’t do that, but putting the
revised value back in the same blue box on the memory diagram
will.

Chapter 6

Scales of measure

In the last chapter, we learned the Python verbiage for how to do
arithmetic operations. In this one, we zoom out and ask: when
does it actually make sense to use those operations? The answer
turns out to be: not always.

Another way to phrase this distinction is in terms of syntax vs. se-
mantics. Syntax concerns the rules for combining various symbols
in a programming (or other) language. Semantics concerns the
meaning of those symbols. This isn’t something a programming
language can tell us. Only a human who understands what all
those symbols refer to can determine when a particular combina-
tion actually relates to something meaningful.

6.1 The four scales of measure

Every variable1 we collect can have various values, and the nature of
information it contains can be described by its scale of measure.

1Note that our use of the term variable in this chapter is different than
how we used it in chapter 3 (e.g., p. 14) and throughout chapter 5. In this
chapter, a variable is normally some measurable aspect of every object in our
study. We might recruit participants to a research experiment, and record their
race, weight, and favorite breakfast cereal. These would be our three variables.
Each of the three will constitute many values, since our group of participants
will have many races, weights, and cereals. In programming terms, they will
eventually become aggregate data types of some kind.

43

44 CHAPTER 6. SCALES OF MEASURE

There are four such scales of measure2, and each one determines
which kinds of operations are “legal” (i.e., sensible) with that vari-
able.

Categorical/nominal

The first kind is the simplest, although it actually has two different
names in common use: they’re called both categorical variables
and nominal variables. These variables represent one of a set of
predefined choices, where no choice is “higher” or “greater” than any
other.

An example would be a fave_color variable that holds the value of
a child’s favorite color: legal values are "red", "blue", "green" or
"yellow". We know it’s categorical from, among other things, the
fact that there’s no one right way to order those values. (Alpha-
betical, most-popular-first, and ordering according to the sequence
of the rainbow are three possibilities. You might think of others.)

Political affiliation would be another categorical variable. Its val-
ues (like "Democrat", "Republican", and "Green") aren’t in any
particular order. (Although you might think of the traditional left-
to-right political spectrum, that’s only one dimension of political
party, and perhaps not even the most important one.) Other ex-
amples include a film’s genre, a student’s nationality, and a football
player’s position.

Now you might be tempted to think, “hmm...all the categorical
examples so far are textual, not numeric. Perhaps this scales of
measure thing is just another way of stating the variable type?”
Alas, no. For one, we’ll see text variables in the next category as
well. For another, even data that on its surface seems numeric can
actually be categorical in disguise.

Consider the uniform number of an athlete. I might be interested in
asking, “which uniform number had the greatest professional ath-
letes who chose it?” #24 is a good candidate: Willie Mays, Ken
Griffey Jr., and Kobe Bryant all wore that jersey number. Or maybe

2According to psychologist Stanley Smith Stevens in 1946. Other re-
searchers have developed related, but different, scales of measure.

6.1. THE FOUR SCALES OF MEASURE 45

#7 is the winner, with Mickey Mantle, John Elway, and Cristiano
Ronaldo. Either way, though, all that matters in this analysis is
which uniform number an athlete chose, not how high that number
is compared to others. No one in their right mind would say that
Peyton Manning (#18) was “twice the player” Mia Hamm was (#9),
because uniform numbers aren’t really numbers at all: they’re more
like labels.

Legal operations for categorical/nominal variables

When a variable is on a categorical scale, about the only things you
can do are compare for equality/inequality, count the occurrences
of different values, and compute something called the mode of the
values.

The mode simply means the value that occurs the most often. It’s
the first of the “measures of central tendency” we’ll see: such
measures are a way of capturing something about the “typical” value
of a variable. For categorical variables, the only typical-ness is
“which one occurs the most often?” If we ask a bunch of people for
their fave_color, and we get the answers "blue", "red", "blue",
"blue", and "yellow", then the mode is "blue". It’s that simple.

To wrap things up, these things make sense to ask of a categorical
variable:

U “Is his favorite color the same as her favorite color?”
U “How many people have "red" as their favorite color?”
U “What’s the most popular favorite color?”

while these do not :

D “Is his favorite color greater than her favorite color?” (??)
D “What’s Caitlin’s favorite color minus Hannah’s?” (??)
D “What’s the ‘average’ favorite color in this data set?” (??)

Ordinal

One step up on the food chain is an ordinal variable, which means
that its different possible values do have some meaningful order.

46 CHAPTER 6. SCALES OF MEASURE

Consider education_level, a variable that contains the highest
degree a survey respondent has earned. Its values can be any of
the following: "HS", "Associates", "Bachelors", "Masters", and
"PhD". In some ways, this is like fave_color: the variable must
take on one of a set of specific, prescribed values. However, it’s
pretty clear that a High School degree is closer to (more similar to)
an Associates degree than it is to a Ph.D. Each successive value
represents more education, and so unlike categorical variables, it
does make sense to compare them along greater-than-or-less-than
lines.

In addition to the mode, another measure of central tendency avail-
able for ordinal variables is the median. I think of the median as
the “middlest” value: if you line up all the occurrences in a row –
in order of the values – it’s the one that lies in the exact middle.
Suppose our survey respondents give these answers: "Bachelors",
"HS", "HS", "Masters", "Masters", "Bachelors", and "HS". To
compute the median, we line them all up in order:

"HS" "HS" "HS" "Bachelors" "Bachelors" "Masters" "Masters"

and find the middlest one, which is "Bachelors". So "HS" is the
mode of this variable, and "Bachelors" is the median.

Other examples of ordinal variables include an NCAA basketball
team’s top-25 ranking, a taxpayer’s tax bracket, and survey ques-
tions asking whether you "strongly disagree", "disagree", are
"neutral", "agree", or "strongly agree" with a certain state-
ment.

Again, a list of do’s and don’t’s. For ordinal variables, these are
okay:

U “Is his education level the same as her education level?”
U “How many people answered "strongly disagree" to this

question?”
U “Is UMW basketball ranked higher or lower than Messiah?”
U “What’s the median tax bracket for this group of employees?”

6.1. THE FOUR SCALES OF MEASURE 47

while these are not :

D “Which looks like the bigger mismatch on paper: Duke v. Ken-
tucky, or Villanova v. Gonzaga?” (??)

D “What’s Caitlin’s education level minus Hannah’s?” (??)
D “What’s the ‘average’ tax bracket for this group of employ-

ees?”

It’s worth commenting on that second list, because you might have
thought some of those items were completely reasonable. For ex-
ample, suppose that in the latest AP poll, Duke is currently ranked
#1, Kentucky #3, Villanova #4, and Gonzaga #23. You might
think that clearly the Villanova/Gonzaga matchup is the most lop-
sided, since there’s nineteen places between them, whereas Duke
and Kentucky are separated by just two.

But not necessarily. We know Duke is considered stronger than
Kentucky, but not how much stronger. It is almost certainly not
the case that the teams are exactly evenly spaced all the way down
the list from #1 to #25. Real life doesn’t work like that. Instead,
it might be the case that Duke and Georgetown, the #1 and #2
teams in the country, are considered far and away the best two
teams. And perhaps the next five or even twenty teams on the
list are considered very close, to the point where experts disagree
wildly on what order they should be in. If this is the case, then
mighty Duke vs. (comparatively) lowly Kentucky might be an enor-
mous mismatch, while Villanova and Gonzaga might be considered
a tossup.

The bottom line is: although an ordinal variable’s values are or-
dered, there is no information at all about the spacing between
them. I’ll tell you from personal experience that the difference be-
tween a Bachelors and a Masters degree is nuthin’ compared to
that between a Masters and a Ph.D. (You can ask anyone who has
earned the latter for confirmation.)

This leads into the second item on the no-no list: subtracting two
ordinal values. All you’re going to get is “the number of posi-
tions in the sequence by which they differ,” which tells you next
to nothing. If I ask people to rate a movie on a scale of "POOR",

48 CHAPTER 6. SCALES OF MEASURE

"FAIR", "GOOD", and "EXCELLENT", the difference between "POOR"
and "GOOD" is likely to be a lot greater than that between "FAIR"
and "EXCELLENT". This is true even though the “difference” be-
tween them seems exactly the same: two ranking’s worth. The
fact is that humans don’t interpret those four adjectives as exactly
equally spaced, and therefore it’s a fallacy to interpret their results
as though they did.

Which leads to the third and last item: trying to take the “average”
(adding up all the scores and dividing by the total). It’s tempting
to say, “let’s treat "POOR" as a 1, "FAIR" as a 2, "GOOD" as a 3,
and "EXCELLENT" as a 4. Then, we can just take the mean of all
the results to get the average rating! What’s not to like?” Here’s
what’s not to like. By assigning those numbers, you added spuri-
ous information and thereby twisted the respondent’s meaning into
something they didn’t necessarily intend. They very likely didn’t
think of the four options as equally-spaced numerically, and so this
average is quite bogus. Instead, take the median.

Interval

Onward. Our next scale of measure is the interval scale, which
fulfills what was missing with ordinal variables. An interval variable
does have meaningful and reliable differences between values, which
can be computed and analyzed.

Unlike the previous two scales, interval variables are always numeric
by nature. You can’t subtract two words from one another, but
you can do so with numbers, and unlike our uniform number and
NCAA hoops ranking examples, that subtraction is a meaningful
operation.

An example of an interval variable might be the longitude (or lat-
itude) of a city. Not only can we ask whether two cities have the
same longitude (as with categorical), and whether one is east or
west of another (as with ordinal), we can now ask how far east.
Subtract one longitude from the other, and boom. We have a reli-
able degree of difference.

This allows us to ask questions like “are Dallas and Fort Worth far-

6.1. THE FOUR SCALES OF MEASURE 49

ther apart than Minneapolis and St. Paul are?” or “is the tempera-
ture swing between daytime and nighttime wider in Colorado than
in Virginia?” (Hint: yes.) Note that we couldn’t legally ask such
questions of an ordinal variable, since there was no way to really
know how large the difference between "GOOD" and "EXCELLENT"
was, as opposed to that between "FAIR" and "GOOD".

Another example of an interval scale variable, besides the aforemen-
tioned temperature, is the year an event takes place. We can say, for
example, that nearly two-thirds of our nation’s history has occurred
after the Civil War (2021−1865 = 156 years, versus 1861−1776 = 85
years).

The quintessential measure of central tendency for interval scale
is the arithmetic mean. Both the median and the mode are still
permitted, and they are sometimes quite useful. But often we’re
going to fall back on the add-’em-up-and-divide-by-the-number-of-
elements thing you learned in grade school. In this case, it makes
sense, because the values are at fixed, meaningful, numerical posi-
tions and so adding them up is okay.

Here’s our list of goods (for interval scale variables):

U “Was today’s high temperature the same as yesterday’s?”
U “Was Beethoven born before or after Napoleon?”
U “How many cities are at 40° latitude?”
U “What’s the median year of birth for current U.S. Senators?”
U “Which is experiencing more global warming (temperature dif-

ference) – Greenland or France?”
U “What’s London’s latitude minus Boston’s? How much far-

ther north is it?”
U “What was the average high temperature in Fredericksburg in

September?”

and bads:

D “Which cities are at least 20% more east than Chicago?” (??)
D “When was the first fall day which was half as hot as it was

on July 4th?” (??)
D “Was Lincoln born 5% later than Washington?” (??)

50 CHAPTER 6. SCALES OF MEASURE

Let’s consider that bads list. With an interval scale variable, we
can ask almost anything we want to about it. Almost. The one
fly in the ointment is questions that have phrases like “twice as”
or “10% less than.” Those, we cannot do. The reason is that an
interval scale variable has no meaningful zero point.

In an interval scale, values have relative distances from each other,
but not absolute differences from some fixed reference point. Con-
sider years. Saying that the Cubs finally won the World Series 146
years after their franchise was born is meaningful: the difference
between 1870 and 2016 can be measured. But what if we said “they
won the World Series 7.8% later than their franchise was born”?
Could such a sentence possibly say anything useful?

The answer is no, and here’s why. The “zero point” of our calen-
dar system is arbitrary. By that I mean that the year we might
consider “year zero” has nothing to do with the Cubs or baseball
or America or anything else: it was a guess as to the birth year of
Jesus Christ, and a wrong one at that.3

We could, of course, have chosen to measure time relative to any
other point instead, like the birth of our own nation, the founding
of Rome, the Cubs franchise being founded, or anything else. If we
had done that, all of the relative differences between years would
have been the same: there would still have been 85 years between
the Declaration of Independence and the Civil War, Barack Obama
would still have been President for 8 years, and you would still
be the same age. But all the absolute calculations that implicitly
make reference to the zero point – like “what percent later did the
Cubs won the Series than their franchise began?” would suddenly
become radically different. If we measured years relative to 1776,
then the Cubs’ victory would have been “155.3% later” than their
origin, instead of “7.8% later!” That betrays the fact that this is an

3Later historical discoveries have demonstrated that Herod the Great died
in what we now call 4 B.C. If you went to Sunday School, you might recall
that in a fit of jealousy, King Herod the Great ordered all the baby boys in
Bethlehem (two years old or younger) to be killed. (See Matthew 2:13-18.) He
chose “two years or younger” as the cutoff because his goal was to kill Jesus,
who was about two years old at the time. Hence Jesus was most likely born in
the year which we have (incorrectly, it turns out) labeled as “6 B.C.” Fun facts.

6.1. THE FOUR SCALES OF MEASURE 51

utterly meaningless calculation.

Same thing with longitude. While latitude plausibly has a mean-
ingful zero point – the equator – and thus perhaps “twice as north”
has some meaning to it (“twice as far from the center of the planet”)
longitude clearly does not. Saying a city is “twice as east” as another
is plain nonsense. That’s because the zero point for longitude is ar-
bitrary: it’s set at the Greenwich, England, of all things. Clearly
only relative differences between longitude have any meaning.

And the same thing with temperature. If yesterday’s high was 40°,
and today’s is 80°, it’s tempting to say “whew! It’s twice as hot
today!” To see that this is gibberish, though, consider what would
happen if we changed to use the metric system like the rest of the
civilized world does, and measured temperature in Celsius. Now if
we did that, clearly we wouldn’t start experiencing heat waves or
cold spells as a result! Hey we’re just changing our units, bro, not
influencing the atmosphere. But realize that in Celsius, yesterday’s
40°F day would become 4.4°C, and today’s 80°F would be 26.7°C. So
now, by changing our units, we would have to say “oh golly, I guess
it’s actually over six times as hot today!” This is why multiplying
and dividing with interval scale variables leads to madness.

Ratio

Which brings us to our last of the four scales: the ratio scale. In
some ways this is the easiest to understand, because of all the math-
ematical questions we might want to ask, we can ask them. Multi-
ply, divide, make absolute statements like “25% greater than” – go
crazy, man.

Salary has a meaningful, absolute zero point: namely, an unem-
ployed (or volunteer) worker earning zero dollars. Since we have
that non-arbitrary standard, it makes perfect sense to say things
like “he makes twice as much as she does.

The height of a person has a meaningful zero point as well: the
ground. If Tyrion Lannister rises 31

2 feet from the floor, and Gregor
Clegane stands a full 7 feet from that same floor, it makes all the
sense in the world to say “Gregor is twice as tall as Tyrion.”

52 CHAPTER 6. SCALES OF MEASURE

As with interval scale variables, we often use the arithmetic mean
as our measure of central tendency.4

6.2 Final word

The lesson of this chapter is that Python will not prevent you from
doing any of the above stupid things – if we have an ordinal scale
variable, for instance, we can subtract values from one other until
we’re blue in the face, not recognizing that the results we’re pro-
ducing are gibberish. It’s all on us to be responsible data citizens,
and to only use operations that give meaningful results.

4Interestingly, there are actually two different kinds of means, one of which,
called the “geometric mean” is only applicable on the ratio data scale. It involves
multiplying and taking roots instead of adding and dividing, and is a useful
operation in some niche contexts.

Chapter 7

Three kinds of aggregate data

Now it’s time to consider some loftier goals for our lowly atomic
bits of data. Most anything interesting in Data Science comes from
arranging them together in various ways to form more complex
structures. This chapter is the subject of these.

7.1 Aggregate data types

The number of ways in which pieces of data can be arranged is far
greater than the number of different atomic types. These various
ways all have names, some of them nerdy and/or exotic like “hash
tables,” “binary search trees,” and “skip lists.” Nevertheless, there
are again three basic ones which will form the basis of our study:
they’re called arrays, associative arrays, and tables. As before,
we’ll consider each one conceptually first, and then look at how to
use them in Python.

Arrays

An array is simply a sequence of items, all in a row. We call those
items the “elements” of the array. So an array could have ten
whole numbers as its elements, or a thousand strings of text, or a
million real numbers.

Normally, we will deal with homogeneous arrays, in which all the
elements are of the same type; this turns out to be what you want

53

54 CHAPTER 7. THREE KINDS OF AGGREGATE DATA

99% of the time. Some languages (including Python) do permit cre-
ating a heterogeneous array, which could hold (say) three whole
numbers, sixteen reals, and four strings of text all mixed together.
But usually you’re using an array to contain a bunch of related val-
ues, like the current balances of all the accounts in your bank, or
the Twitter screen names of all a user’s followees.

Figure 7.1 shows what those two examples would look like concep-
tually. One has four strings of text, and the other five real numbers.
Note that each entire set of elements is one variable. We might call
the left one “followees” and the right one “balances.”

Figure 7.1: Two arrays.

Worthy of special note are the numbers on the left-hand side. These
numbers are called the indices (singular: index) of the array. They
exist simply so we have a way to talk about the individual ele-
ments. I could say “element #2 of the followees array” to refer to
@Cristiano.

And yes, you noticed that the index numbers start with 0, not
1. Yes, this is weird. The reason I did that it is because nearly
all programming languages (including Python) number their array
elements starting with zero, so you might as well just start getting
used to it now. It’s really not hard once you get past the initial
weirdness.

Arrays are the most basic kind of aggregate data there is, and
they are the workhorse of a whole lot of Data Science processing.
Sometimes they’re called lists, vectors, or sequences, by the way.
(When a particular concept has lots of different names, you know
it’s important.)

7.1. AGGREGATE DATA TYPES 55

Associative arrays

An associative array, by contrast, has no index numbers. And its
elements are slightly more complicated: instead of just bare values,
an associative array contains key-value pairs. Figure 7.2 shows a
couple of examples. The left-hand side of each picture shows the
keys, and the right-hand side the corresponding value.

With an associative array, you don’t ask “what’s element #3?” like
you do with a regular array. Instead, you ask “what value is as-
sociated with the "Baltimore" key?” And out pops your answer
("Ravens").

Figure 7.2: Two associative arrays.

All access to the associative array is through the keys: you can
change the value that goes with a key, retrieve the value that goes
with a key, or even retrieve and process all the keys and their
associated values sequentially.1 In that third case, the order in
which you’ll receive the key-value pairs is undefined (which means
“not guaranteed to be consistent” or “not necessarily what you’d
expect.”) This underscores the fact that there isn’t any reliable
“first” key-value pair, or second, or last. They’re just kind of all
equally “in there.” Your mental model of an associative array should
just think of keys that aremapped to values (we say that "Dallas"
is “mapped” to "Cowboys") without any implied order. (Sure, the
"Philadelphia"/"Eagles" pair is at the top of the picture, but
that’s only because I had to put something at the top of the picture,

1Using something called a “loop,” which we’ll learn about a little later in
the book.

56 CHAPTER 7. THREE KINDS OF AGGREGATE DATA

and I chose Philadelphia at random. It doesn’t have any meaningful
primacy though.)

Note a couple things about Figure 7.2. First, the keys in an associa-
tive array will almost always (and for us, always) be homogeneous.
Similarly, the values will be homogeneous. But the keys might not
be of the same type as the values. In the left picture, both keys and
values are text, but in the right picture, the keys are text and the
values (uniform numbers of famous athletes) are whole numbers.
This is perfectly healthy and good.

Second, realize that the keys in an associative array must be unique
– this means that there can be no duplicate keys. If we tried to
create a second "Alex Morgan" (oh, if only...) with a different value,
that new value would replace Alex’s current value, not sit alongside
the first one as an additional key-value pair.

The reverse is not true, however: the values of an associative array
may very well not be unique. In the left-hand picture they are,
but in the right-hand picture there are duplicates: both Jordan
and LeBron wore #23 in their stellar careers, while Hall of Famer
quarterback Dan Marino once chose the same uniform number that
Alex wears today. This isn’t a problem, because we always access
the information in an associative array through the keys. Asking
“what number did Mia Hamm wear?” gives us a well-defined answer.
Asking “which famous athlete wore #23?” does not. That’s why
we can’t ask that second question (and aren’t meant to).

Tables

Lastly, we have the table, which in Data Science is positively ubiq-
uitous. In Figure 7.3 we return to the pinterest.com example, with
a table of their most popular users. As you can see, it has more
going on that than the previous two aggregate data types. Still, it’s
pretty straightforward to wrap your head around.

Unlike the other two aggregate data types, tables are full-on two-
dimensional. There’s (theoretically) no limit to how many rows
and how many columns they can have. By the way, it’s important
to get those two terms straight: rows go across, and columns go

7.1. AGGREGATE DATA TYPES 57

Figure 7.3: A table.

up and down. (Think of the columns in the Trinkle Rotunda.)
Also, the typical table has many, many more rows than columns,
so they’re super tall and skinny, not short and fat.

Although the rows of a table are often heterogeneous, each column
must be homogeneous. You can see that with a glance at Figure 7.3.
Each column represents a specific type of data – in this case, some
statistic or piece of information about a Pinterest user. Clearly
all screen names should be of a text type, all “number of pins or
followers” should be whole numbers, etc. It doesn’t make sense
otherwise.

As with the other types, the whole dog-gone table – no matter how
many millions of rows it might have – is one variable with a single
name. Also, just like with associative arrays, there normally isn’t
any implied order to the rows. Many implementations of these data
types (including Python/Pandas) will actually let you specify “the
first row” or “the 53rd row,” but that always makes me cringe be-
cause conceptually, there isn’t any such thing. They’re just “rows”
that are all “in there.”

“Querying” tables (and other things)

Now you might be wondering how to actually “get at” the individual
values of a table. Unlike arrays, there’s no index number. And
unlike associative arrays, there’s no key. How then to address, say,
the @poppytalk row?

The answer will turn out to be something called a query, which is
a geeky way of saying “a set of criteria which will match some, but

58 CHAPTER 7. THREE KINDS OF AGGREGATE DATA

not all, of the rows and/or columns.” For instance, we might say
“tell me the pin count for @ohjoy.” Or, “give me all the information
for any user who has more than 100,000 followers per board and
at least 20,000 pins.” Those specific requirements will restrict the
table to a subset of its rows and/or columns. We’ll learn the syntax
for that later. It’s a bit tricky but very powerful.

By the way, it turns out we’ll actually be using the concept of a
query for arrays and associative arrays as well. So strictly speaking,
a query isn’t just a “table thing.” However, they’re especially in-
valuable for tables, since they’re essentially the only way to access
individual elements.

7.2 Aggregate data and memory pictures

Recall from chapter 4 (p. 26) that the right-hand side of our memory
pictures bore the label “Aggregate data.” You may have anticipated
that that’s where the stuff in this chapter will live, and you’re right.
But there’s a catch. Remember that variable names live on the left-
hand side, and that’s true even if the variable is of an aggregate
type! This turns out to be crucially important, so I’m going to
make a big deal about it.

You must draw your memory pictures (either on a whiteboard, or
in your head) in a very specific way, and that way is illustrated in
Figure 7.4.

Study this picture carefully, and notice several vitally important
things. First, all the variable names are on the left-hand side –
whether aggregate or not. This is always, always true.

Second, the actual array, associative array, and table depicted in
this diagram are on the right-hand side. The variable name on
the left “points to” the data in question with a little arrow. The
technical name for this arrow is a pointer or a reference. The rule
is simple: each atomic variable (like gpa or course) contains the
colored box itself. Aggregate variables (like the other four) contain
a pointer to the group of colored boxes.

Finally, mull over the fact that two different variables in this mem-

7.2. AGGREGATE DATA AND MEMORY PICTURES 59

Figure 7.4: Where aggregate data variables – and their variable names –
live in memory.

ory picture are pointing to the same thing! (ages and people)
Believe it or not, this is a normal occurrence. The consequence is
that if Stacey had a birthday, and we increased her age from 19 to
20 in the associative array, both ages and people would automati-
cally see the new value. There is only one copy of that associative
array in memory, and both variable names point at it.

It may seem like I’m being pedantic with this left-side-right-side
stuff and all the little arrows. I promise you I’m not. The
moment your data analysis program gets even mildly complicated,
you will do the wrong thing and get the wrong answers if you don’t
think of it exactly like this. So take your time and commit it to
memory. (See what I did there?)

Chapter 8

Arrays in Python (1 of 2)

There are several candidates in the Python language for represent-
ing the type of array structure we introduced in chapter 7. One is
the plain-ol’ Python list, which you may have used if you’ve taken
a computer science course in Python. Turns out, lists are going
to be too slow for us once we start dealing with a lot of data, plus
there are a lot of things that it won’t do for us automatically that
are handy to have. Another choice is the Pandas Series which
we’ll actually introduce in chapter 11 – oddly, that one turns out to
do too much, rather than too little, for our purposes here. A happy
medium is the ndarray from the NumPy package1. Before we do
that, however, we need to learn what a “package” actually is, and
how to use one.

8.1 Packages

Back in my day (circa 1990’s) when someone wanted to write a
computer program, they wrote the entire thing themselves, line
by line. Everything you needed to do – from something complex
like making a remote network connection to something simple like
computing the average of some numbers – was up to you to build.
Code sharing over the Internet just wasn’t much of a thing.

1Most people seem to pronounce this “NUM-pie,” although I’ve heard
“NUM-pee” as well. Pick your poison.

61

62 CHAPTER 8. ARRAYS IN PYTHON (1 OF 2)

Today, the reverse is true. When you write a complex data analysis
program, most of the code will actually be written by others, if
you do it right. This is because many, many smart people across
the globe have written snippets of code to do all the common (and
some not-so-common) things you’ll want to do, and your job is
to string them all together. Put another way: you’re given most
of the Legos® – and even a bunch of pre-assembled chunks made
with dozens of Legos® each – and your job is to construct your
masterpiece out of those building blocks.

In Python, a package is a repository of useful functions and meth-
ods that someone else has written. By importing a package into
your program, you’re making all those useful things available to
you. Your own code can then call those functions/methods when-
ever you see fit. It’s the modular, organized, and elegant way to do
things, in addition to saving a ton of time.

The first package we’ll use is called NumPy, which stands for “Nu-
merical Python.” To import it, you should include this exact line
of code in the first Code cell of your Notebook:

import numpy as np

Note that it’s in all lower-case letters. Once that cell has been
executed, you now have access to all the NumPy “stuff,” which is
the subject of this chapter.

8.2 The NumPy ndarray

The actual data type that the NumPy package provides is called
an ndarray, which stands for “n-dimensional array.” If that sounds
heady, it kind of is, although in this course we’re only ever going to
use a one-dimensional array, which is super simple to understand.
In fact, it looks exactly like the examples in Figure 7.1 (p. 54).

8.2. THE NUMPY NDARRAY 63

“One-dimensional” just means that there is a single index number,
and the elements are all in a line.2

Creating ndarrays

There are many different ways to create an ndarray. We’ll learn
four of them.

Way 1: np.array([])

The first is to use the array() function of the NumPy package, and
give it all the values explicitly. Here’s the code to reproduce the
Figure 7.1 examples:

followees = np.array(['@katyperry','@rihanna','@TheEllenShow'])
balances = np.array([1526.73, 98774.91, 1000000, 4963.12, 123.19])

It’s simple, but don’t miss the syntactical gotcha: you must include
a pair of boxies inside the bananas. Why? Reasons.3 For now, just
memorize that for this function – and this function only – we use
“([...stuff...])” instead of “(...stuff...)” when we call it.

By the way, the attentive reader might object to me calling array()
a function, instead of a method. Isn’t there a word-and-a-dot before
it, and isn’t that a “method thing?” Shrewd of you to think that,
but actually no, and the reason is that “np” isn’t the name of a
variable, but the name of a package. When we say “np.array()”
what we’re saying is: “Python, please call the array() function
from the np package.” The word-and-dot syntax does double-duty.

We can call the type() function, as we did back on p. 17, to verify
that yes indeed we have created ndarrays:

2A two-dimensional array is a spreadsheety-looking thing also called a ma-
trix. Each element has two index numbers: a row and a column. A three-
dimensional array is a cube, with three index numbers needed to specify an
element. Etc.

3For the experienced reader, what we’re actually doing here is creating a
plain-ol’ Python list (with the boxies), and then calling the array() function
with that list as an argument.

64 CHAPTER 8. ARRAYS IN PYTHON (1 OF 2)

print(type(followees))
print(type(balances))

numpy.ndarray
numpy.ndarray

This is useful, but sometimes we want to know what underlying
atomic data type the array is comprised of. To do that, we attach
“.dtype” (confusingly, without bananas this time) to the end of the
variable name. “.dtype” stands for “data type.” Here goes:

print(type(followees))
print(type(balances))

dtype('<U13')
dtype('float64')

Whoa, what does that stuff mean? It’s a bit hard on the eyes, but let
me explain. The underlying data type of followees is (bizarrely)
“<U13” which in English means “strings of Unicode characters4, each
of which is 13 characters long or less.” (If you bother to count, you’ll
discover that the longest string in our followees array is the last
one, ’@TheEllenShow’, which is exactly 13 characters long.) The
“float64” thing means “floats, each of which is represented with
64 bits5 in memory.

You don’t need to worry about any of those details. All you need
to know is: if an array’s dtype has “<U” in it, then it’s composed of
strings; and if it has the word “int” or “float” in it, it means one
of those two old friends from chapter 3.

4A “Unicode character” is just a fancy way of saying “a character, which
might not be English.” NumPy is capable of storing more than just a-b-c’s in
its strings; it can store symbols from Greek, Arabic, Chinese, etc. as well.

5A “bit” – which is short for “binary digit” – is the tiniest piece of information
a computer can store: it’s a single 0 or 1.

8.2. THE NUMPY NDARRAY 65

Incidentally, you’ll recall from chapter 7 that an array is homoge-
neous, which means all its elements are of the same type. NumPy
enforces this. If you try to combine them:

weird = np.array([3, 4.9, 8])
strange = np.array([18, 73.0, 'bob', 22.8])

you’ll discover that NumPy converts them to all be of the same
type:

print(weird)
print(weird.dtype)
print(strange)
print(strange.dtype)

[3. 4.9 8.]
dtype('<U3')
['18' '73.0' 'bob' '22.8']
dtype('float64')

See how the ints 3 and 8 from the first array were converted into
the floats 3. and 8.; meanwhile, all of the numerical elements
of the second array got converted to strs. (If you think about it,
that’s the only direction the conversions could go.)

Way 2: np.zeros()

It will often be useful to create an array, possibly a large one, with
all elements equal to zero initially. Among other scenarios, we of-
ten need to use a bunch of counter variables to, well, count things.
(Recall our incrementing technique from Section 5.1 on p. 33.) Sup-
pose, for example, that we had a giant array that held the numbers
of likes that each Instagram photo had. When someone likes a
photo, that photo’s appropriate element in the array should be in-
cremented (raised in value) by one. Similarly, if someone unlikes
it, then its value in the array should be decremented by one.

66 CHAPTER 8. ARRAYS IN PYTHON (1 OF 2)

An easy way to do this is NumPy’s zeros() function:

photo_likes = np.zeros(40000000000)

(although I’ll bet you don’t have enough memory on your laptop to
actually store an array this size! Instagram sure has a lot of pics...)
When I do this on my Data Science cluster, I get this:

print(photo_likes)
print(photo_likes.dtype)

array([0., 0., 0., ..., 0., 0., 0.])
float64

Don’t miss the “...” in the middle of that first line! It means “there
are (potentially) a lot of elements here that we’re not showing, for
conciseness.” Also notice that zeros() makes an array of floats,
not ints.

Way 3: np.arange()

Sometimes we need to create an array with regularly-spaced values,
like “all the numbers from one to a million” or “all even numbers
between 20 and 50.” We can use NumPy’s arange() function for
this.

Normally we pass this function two arguments, like so:

usa_years = np.arange(1776, 2022)
print(usa_years)
print(usa_years.dtype)

[1776 1777 1778 1779 ... 2018 2019 2020 2021]
int64

8.2. THE NUMPY NDARRAY 67

If you read that code and output carefully, you should be sur-
prised. We asked for elements in the range of 1776 to 2022, and we
got...1776 through 2021. Huh?

Welcome to one of several little Python idiosyncrasies. When you
use arange() you get an array of elements starting with the first
argument, and going up through but not including the last number.
There’s a reason Python and NumPy decided to do it this way6,
but for now it’s just another random thing to memorize. If you
forget, you’re likely to get an “OBOE” – which stands for “off-by-
one error” – a common programming error where you do almost the
right thing but perform one fewer, or one more, operation than you
meant to.

Anyways, other than that glitch, you can see that the function did
a useful thing. We can quickly generate regularly-spaced arrays of
any range of values we like. By including a third argument, we
can even specify the step size (the interval between each pair of
values):

twentieth_century_decades = np.arange(1900, 2010, 10)
prez_elections = np.arange(1788, 2024, 4)
print(twentieth_century_decades)
print(prez_elections)

[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]
[1788 1792 1796 1800 ... 2008 2012 2016 2020]

Notice we had to specify 2010 and 2024 as the second argument
to these function calls in order for the arrays to include 2000, and
2020, respectively. This is the same “up to but not including the
end point” behavior, but extended to step sizes of greater than one.

6Certain common operations are claimed to be “simpler” when you make a
range function work this way. I personally don’t buy it: I think it should work
in the way you probably expected (including the second argument). I didn’t
get a vote, though.

68 CHAPTER 8. ARRAYS IN PYTHON (1 OF 2)

Way 4: np.loadtxt()

Most of the data that we analyze will come from external files,
rather than being typed in by hand in Python. For one thing,
this is how it will be provided by external sources; for another, it’s
infeasible to actually type in anything very large.

Let me say a word about files. You probably work with them every
day on your own computer, but what you might not realize is that
fundamentally, they all contain the same kind of “data.” You might
think of a Microsoft Word document as a completely different kind
of thing than a GIF image, or an MP3 song file, or a saved HTML
page. But they’re actually more alike than they are different. They
all just contain a bunch of bits. Those bits are organized to conform
to a particular kind of file specification, so that a program (like
Word, Photoshop, or Spotify) can recognize and understand them.
But it’s still just “information.” The difference between a Word doc
and a GIF is like the difference between a book written in English
and one written in Spanish; it’s not like the difference between a
bicycle and a fish.

In this course, we’ll be working with plain-text files. This is how
most of the open data sources on the Internet provide their infor-
mation. A plain-text file is one that consists of readable characters,
but which doesn’t contain any additional formatting (like boldface,
colors, margin settings, etc.). You can actually open up a plain-text
file in any text editor (including Microsoft Word) and see what it
contains.

In your CoCalc account, you have your own little group of files
which, like those on your own computer, can be organized into
directories (or folders7). It is critically important that the data
file you read, and the Jupyter Notebook that reads it, are in the
same directory. The #1 trouble students experience when trying
to read from a text file is not having the text file itself located in the
same directory as the code that reads it. If you make this mistake,
Python will simply claim to not recognize the filename you give it.

7The words “directory” and “folder” are exact synonyms, and mean just
what you think they mean. They are named containers which can contain files
and/or other directories

8.2. THE NUMPY NDARRAY 69

That doesn’t mean your file doesn’t exist! It’s just not in the right
place.

An example of doing this correctly is in Figure 8.1. We’re in a
directory called “filePractice” (stare at the middle of the figure
until you find those words) which is contained within the home di-
rectory that’s denoted by a little house icon. Your home directory
is just the starting point of your own private little CoCalc world.
The slash mark between the house and the word filePractice in-
dicates that filePractice is contained directly within, or “under,”
the home directory.

Figure 8.1: A directory (folder) on CoCalc, which contains two files: a
plain-text file (called uswnt.txt) and a Jupyter Notebook which will read
from it (funWithArrays.ipynb).

The two entries listed are a plain-text file (called uswnt.txt) and
a Jupyter Notebook (funWithArrays.ipynb). You can tell that
the former is a plain-text file because of the filename extension
“.txt”.8 If we clicked on uswnt.txt, we’ll bring up the contents of
the file, as shown in Figure 8.2. In this case, we have the current

8Some operating systems like Windows, unfortunately, tend to “hide” the
extension of the filenames it presents to users. You may think you have a
file called “nfl2020” when you actually have one called “nfl2020.txt” or
“nfl2020.csv,” and Windows thinks it’s being helpful (?!) by simply not show-
ing you the part after the period. There are ways to tell Windows you’re smarter
than that, and that you want to see extensions, but these change with every
version of Windows so I’ll leave you to Google to figure that one out.

70 CHAPTER 8. ARRAYS IN PYTHON (1 OF 2)

roster on the US Women’s National Soccer team, one name per line.
Perhaps the most important thing to see is that the file itself, which
we will read into Python in a moment, is nothing strange or scary:
you could type it yourself into Notepad or Word.9

This is a good time to mention that spaces and other funny char-
acters in filenames are considered evil. You might think it looks
better to call the notebook file “fun with arrays.ipynb” and the
data file “US Women’s National Team roster.txt”, but I promise
you it will lead to pain in the end, for a variety of fiddly rea-
sons. It’s better to use camel case for filenames, which is simply
capitalizingEachSuccessiveWordInAPhrase.

Figure 8.2: The contents of a plain-text file, as rendered by CoCalc.

Okay, finally back to NumPy code. If all the stars are aligned,
we can write this code in a funWithArrays.ipynb cell to read the
soccer roster into an ndarray:

9If you do ever create a plain-text file using Microsoft Word or similar
word processing program, be sure to choose “Save as...” and save the file in
plain-text mode. If you don’t, Word will save a ton of extraneous formatting
information (page settings, fonts, italics, and so forth) which will utterly pollute
the raw information and make it impossible to read into Python.

8.2. THE NUMPY NDARRAY 71

roster = np.loadtxt("uswnt.txt", dtype=object, delimiter="###")

There’s a lot of weird stuff in that line, so follow me here. The
first argument is easy enough: the name of the file that contains
our data. (Again, I stress that the file must be located in the
same directory as the notebook!) The second argument is bizarre:
we know what dtype means, but “object”? Ugh, another fiddly
detail. When you read from a file into a NumPy array, you will be
reading one of our three atomic types. Here are the rules:

If you want to read an array of... ...then set dtype to:
ints int

floats float
strs object

So basically, you set dtype to the type of data you want in your
ndarray...unless you want strings, in which case you put the word
object. Sorry about that.

The last of the three arguments is even nuttier, and you actually
don’t need to include it at all if you’re reading ints or floats.
If you’re reading strs, however, you need to set the delimiter to
something that doesn’t appear in any of the strs. I chose three-
hashtags-in-a-row since that rarely appears in any set of text data.

Bottom line: once we’ve done all this, we get:

print(roster)

['Alyssa Naeher' 'Mallory Pugh' 'Sam Mewis' 'Becky Sauerbrunn'
"Kelly O'Hara" 'Morgan Brian' 'Abby Dahlkemper' 'Julie Ertz'
'Lindsey Horan' 'Carli Lloyd' 'Ali Krieger' 'Tierna Davidson'
'Alex Morgan' 'Emily Sonnett' 'Megan Rapinoe' 'Rose Lavelle'
'Tobin Heath' 'Ashlyn Harris' 'Crystal Dunn' 'Allie Long'
'Adrianna Franch' 'Jessica McDonald' 'Christen Press']

which is pretty cool.

72 CHAPTER 8. ARRAYS IN PYTHON (1 OF 2)

Figure 8.3: The memory picture of the four arrays we created in section 8.2.

8.3 Arrays in memory pictures

Before we leave this chapter and move on to actually using the
ndarrays we’ve created, let me once again emphasize the memory
picture and where arrays live in it. The four arrays we created
in the previous section are depicted in Figure 8.3 on the following
page. In each case, the variable name appears in the left half, with
a pointer to the array itself which lives in the right half. Each of
the four arrays starts at index 0, of course, and is numbered up to
its length minus 1.

Learn to love these pictures!

Chapter 9

Arrays in Python (2 of 2)

Now that we know several options for how to create ndarrays, what
can we do with them? Many and sundry things.

9.1 Getting the array size

To learn how long an array is (i.e., how many elements) we use
the len() function, kind of like we did for strings. Refer back to
Figure 8.3 (p. 72) and consider this code:

num_players = len(roster)
sam_len = len(roster[2])
big_number = len(photo_likes)
print("There are {} players on the USWNT.".format(num_players))
print("Sam Mewis has {} characters in her name.".format(sam_len))
print(big_number)
print("We've had {} elections.".format(len(prez_elections)))

There are 24 players on the USWNT.
Sam Mewis has 9 characters in her name.
40000000000
We've had 59 elections.

73

74 CHAPTER 9. ARRAYS IN PYTHON (2 OF 2)

This is an example of Python overloading function names, which
just means that the same name is used for two different functions.
When you pass a string to len(), you get the number of charac-
ters; but when you pass an array to len(), you get the number of
elements it has. (The roster array had way more than 24 letters
in it, notice – but len() returned 24 since that was the number of
strings.)

9.2 Accessing individual elements

Retrieving an element

To get the value of a specific element from an array, we use “boxie
notation” with the index number:

print(prez_elections[0])
third_year = usa_years[2]
print("{} was the 3rd year of U.S.A.".format(third_year))
print("The highest-numbered player is {}".format(

roster[len(roster)-1]))

1788.0
1778 was the 3rd year of U.S.A.
The highest-numbered player is Christen Press.

Remember, indices start at zero (not one) so that’s why the first
line has a 0 in it.

Now examine that last line, which is kind of tricky. Whenever you
have boxies, you have to first evaluate the code inside them to get
a number. That number is then the index number Python will look
up in the array. In the last line above, the code inside the boxies
is:

...len(roster)-1...

Breaking it down, we know that len(roster) is 24, which means
len(roster)-1 must be 23, and so roster[len(roster)-1] is

9.2. ACCESSING INDIVIDUAL ELEMENTS 75

Christen Press. It’s a common pattern to get the last element
of an array.1

To test your understanding, figure out what the following code will
print:

q = 2
r = np.array([45,17,39,99])
s = 1
print(r[q-s+1]+3)

The answer is at the end of the chapter.

Changing an element

To modify an element of an array, just use the equals sign like we
do for variables:

stooges = np.array(['Larry','Beavis','Moe'])
print(stooges)
stooges[1] = 'Curly'
print(stooges)

['Larry' 'Beavis' 'Moe']
['Larry' 'Curly' 'Moe']

After all, an individual element like stooges[1] is itself a variable
pretty much like any other.

1Fun fact: you can also use negative indices to mean “from the end of the
array, rather than the beginning.” So roster[-1] will also give you Christen
Press, roster[-2] is Jessica McDonald, roster[-5] is Crystal Dunn, etc.
(see p. 71 for the values). I find this a bit obscure, though, so I don’t normally
use this feature. (Negative indices also mean a completely different thing in the
R language, which is another reason I eschew them in both R and Python.)

76 CHAPTER 9. ARRAYS IN PYTHON (2 OF 2)

Slices

Sometimes, instead of getting just one element from an array, we
want to get a whole chunk of them at a time. We’re interested
in the first ten elements, say, or the last twenty, or the fourteen
elements starting at index 100. To do this sort of thing, we use a
slice.

Suppose we had a list of states in alphabetical order, and wanted to
snag a chunk of consecutive entries out of the middle – say, Arizona
through Colorado. Consider this code:

states = np.array(["AL","AK","AZ","AR","CA","CO","CT",
"DE","FL","GA","HI"])

print(states[2:6])

['AZ' 'AR' 'CA' 'CO']

The “2:6” in the boxies tells Python that we want a slice with
elements 2 through 5 (not through 6, as you’d expect). This is the
same behavior we saw for np.arange() (p. 67) where the range goes
up to, but not including, the last value. Just get used to it.

We can also omit the number before the colon, which tells Python
to start at the beginning of the array:

print(states[:5])

['AL' 'AK' 'AZ' 'AR' 'CA']

or omit the number after the colon, which says to go until the end:

print(states[8:])

9.3. “VECTORIZED” ARITHMETIC OPERATORS 77

['FL' 'GA' 'HI']

We can even include a second colon, after which a third number
specifies a step size, or stride length. Consider:

print(states[2:9:3])

['AZ' 'CO' 'FL']

This tells Python: “start the slice at element #2, and go up to (but
not including) element #9, by threes.” If you count out the states
by hand, you’ll see that Arizona is at index 2, Colorado is at index
5, and Florida is at index 8. Hence these are the three elements
included in the slice.

This slice stuff may seem esoteric, but it comes up surprisingly
often.

9.3 “Vectorized” arithmetic operators

Recall our table of Python math operators (Figure 5.1 on p. 32).
What do those things do if we use them on aggregate, instead of
atomic data? The answer is: something super cool and useful.

Operating on an array and a single value

Consider the following code:

num_likes_today = np.array([6,61,0,0,14])
num_likes_tomorrow = num_likes_today + 3
print(num_likes_tomorrow)

[9 64 3 3 17]

78 CHAPTER 9. ARRAYS IN PYTHON (2 OF 2)

See what happened? “Adding 3” to the array means adding 3 to
each element. All in one compact line of code, we can do five – or
even five billion – operations. This works for all the other Figure 5.1
operators as well.

For somewhat geeky reasons, this sort of thing is called a vector-
ized operation. All you need to know is that this means fast. And
that’s “fast” in two different ways: fast to write the code (since
instead of using a loop, which we’ll cover in 14, you just write a
single statement with + and = signs), and more importantly, fast to
execute. For more geeky reasons, the above code will run lightning
fast even if num_likes_today had five hundred million elements
instead of just five. As you’ll learn if you ever try it, a Python loop
is much slower.2

Don’t get me wrong: there are times we’ll have to use a loop because
we have no choice. But the general rule with Python is: if you can
figure out how to perform a calculation without using a loop, always
do it!

Operating on two arrays

Possibly even cooler, we can even “+” (or “-”, or “*”, or...) two
entire arrays together. Example:

salaries = np.array([38000, 102000, 55750, 29500, 250000])
raises = np.array([1000, 4000, 2000, 1000, 2000])
salaries = salaries + raises
print(salaries)

This code produces:

[39000 106000 57750 30500 252000]

2I just ran that comparison on my laptop, and here are the results. Using
the plain-ol’ “+” vectorized operator, my machine added the number 3 to an
array with five hundred million elements in just 1.51 seconds. A loop, by
contrast, took 2.8 minutes to do the same thing.

9.4. COPYING – AND NOT COPYING – ARRAYS 79

Can you see why? “Adding” the two arrays together performed
addition element-by-element. The result is a new array with 38000+
1000 as the first element, 102000 + 4000 as the second, etc. This,
too, is a lightning-fast, vectorized operation, and it too works with
all the other math operators.

Just to re-emphasize one point before we go on. In the example
back on p. 77, we assigned the result of the operation to a new
variable, num_likes_tomorrow. This means that num_likes_today
itself was unchanged by the code. In contrast, in the example we
just did, we assigned the result of the operation back into an existing
variable (salaries). So salaries has itself been updated as a
result of that code.

9.4 Copying – and not copying – arrays

Now, a surprise for the unwary. Suppose I write this code:

stooges = np.array(['Larry','Beavis','Moe'])
funny_people = stooges
stooges[1] = 'Curly'
print("The stooges are: {}.".format(stooges))
print("The funny people are: {}.".format(funny_people))

Take a moment and predict what you think the output will be.
Then, read it and (possibly) weep:

The stooges are: ['Larry' 'Curly' 'Moe'].
The funny people are: ['Larry' 'Curly' 'Moe'].

Note carefully: no Beavis.

Now the question is why. To understand this (and virtually any
other tricky programming problem) you have to return once again
to the memory picture. Figure 9.1 shows the situation immediately
before, and after, the line “stooges[1] = 'Curly'” executes. Cru-
cially, there is only one array in memory. Both variables – stooges
and funny_people – are pointing at it.

80 CHAPTER 9. ARRAYS IN PYTHON (2 OF 2)

Figure 9.1: The code on p. 79 immediately before (left side) and after (right
side) the line “stooges[1] = 'Curly'” is reached.

You see, if y contains aggregate (instead of atomic) data, the line
“x = y” does not perform a copy operation. Instead, it just points
the x variable name to the same place y is pointing to.

Once you grasp this, it’s easy to see why "Beavis" completely dis-
appeared. There’s only one array at all, so changing stooges has
the side effect of implicitly changing funny_people as well.

Actually copying

The “point the variable to the same thing, but don’t do a copy”
behavior is the default, because such copy operations are expensive
(in terms of memory usage and time to execute). They’re normally
not what you want anyway. Sometimes, however, you do want to
produce an entire separate copy of an array, so you can modify
the copy yet preserve the original. To do so, you use the .copy()
method:

orig_beatles = np.array(['John', 'Paul', 'George', 'Pete'])
beatles = orig_beatles.copy()
beatles[3] = 'Ringo'
print("The Beatles were originally {}.".format(orig_beatles))
print("But the ones we all know were {}.".format(beatles))

Look carefully at that second line: it makes all the difference. In-
stead of making the new variable beatles point to the same array in
memory that orig_beatles did, we explicitly copied the array and
made beatles point to that new copy. The final memory picture
is thus as per Figure 9.2, and the output is of course:

9.5. SORTING ARRAYS 81

The Beatles were originally ['John' 'Paul' 'George' 'Pete'].
But the ones we all know were ['John' 'Paul' 'George' 'Ringo'].

Figure 9.2: The memory picture after calling the .copy() method, instead
of simply assigning to a new variable.

9.5 Sorting arrays

A common operation in Data Science is to sort an array, either
numerically (if the array contains ints or floats) or alphabetically
(if strings). There are two ways to do this, which turn out to differ
in the same way as the operations in the previous section.

One way is to call the .sort() method directly on an array. This
sorts the array in place, which means that the actual data in mem-
ory is rearranged right then and there. As an important side effect,
any other variable that points to the same array will also be sorted.

Here’s an example:

gpas = np.array([2.86, 3.99, 3.12, 1.17])
gpas2 = gpas.copy()
gpas3 = gpas
gpas.sort()
print("gpas has: {}".format(gpas))
print("gpas2 has: {}".format(gpas2))
print("gpas3 has: {}".format(gpas3))

82 CHAPTER 9. ARRAYS IN PYTHON (2 OF 2)

gpas has: [1.17 2.86 3.12 3.99]
gpas2 has: [2.86 3.99 3.12 1.17]
gpas3 has: [1.17 2.86 3.12 3.99]

Do you see why that output was produced? It’s because the memory
picture after the “gpas.sort()” line looks like Figure 9.3. The gpas
variable really is the gpas3 variable, so when one is sorted, the other
automatically is. They’re both distinct from gpas2, though.

Figure 9.3: The state of affairs after .sort()ing the gpas array in place.

The second option is to call the np.sort() function and pass an
array as an object. Like many Python functions, including the
ones in the next section, np.sort() returns a modified copy of its
argument rather than changing it in place. To illustrate:

nfl_teams = np.array(["Ravens", "Patriots", "Broncos",
"Chargers", "Steelers"])

sorted_teams = np.sort(nfl_teams)
print(nfl_teams)
print(sorted_teams)

['Ravens' 'Patriots' 'Broncos' 'Chargers' 'Steelers']
['Broncos' 'Chargers' 'Patriots' 'Ravens' 'Steelers']

Observe that the nfl_teams variable, even though we passed it to
np.sort(), was not itself sorted. The sorted_teams variable, on

9.6. MORE EXOTIC ARRAY MODIFICATIONS 83

the other hand, is alphabetically sorted, because we assigned the
return value from np.sort() to it. Again, the memory picture is
shown in Figure 9.4.

Figure 9.4: Calling the np.sort() function (as opposed to calling the
.sort() method on the array) returns a sorted copy.

To be clear, either one of these techniques can be used on any
ndarray: whole numbers, real numbers, or text. I just chose to
do real numbers in the first example and text in the second. The
difference between the two is merely in what is affected: in one, the
actual array in memory is modified, and in the other, a modified
copy is returned.

9.6 More exotic array modifications

There are lots of additional things you can do to an array to either
modify its structure or rearrange its contents. Here’s a few. Impor-
tant: all of the functions in this section return a modified
copy of the array you pass to it. They do not change the
array in place.

• np.append() can be used to add a single element to the end
of an array, or to add an entire second array of elements to it.
(In the latter case, this is really concatenation of arrays.)

84 CHAPTER 9. ARRAYS IN PYTHON (2 OF 2)

• np.insert() is like the first form of np.append(), except it
inserts in the middle (or the beginning).

• np.delete() will remove an element of an array by position.
In other words, you tell it which index number to remove, not
which element.

• np.flip() reverses the order of elements in an array.

These functions are all summarized in Figure 9.5.

Remember that when you’re calling a function like this – which re-
turns a modified copy – it is perfectly acceptable to store the return
value in the same variable that you passed it. This is common if
you don’t actually want to keep around the original:

ice_cream_flavors = np.flip(ice_cream_flavors)

In this pattern, the net effect is effectively to modify the array in
place, since you’re making a reversed copy, and then assigning that
reversed copy to the same variable.

Anyway, here’s some example code to illustrate the functions in this
section:

clowns = np.array(["Bozo", "Krusty"])
more_clowns = np.array(["Pennywise", "Skelton"])
more_clowns = np.insert(more_clowns, 1, "Happy Slappy")
all_clowns = np.append(clowns, more_clowns)
all_clowns = np.append(all_clowns, "Ronald McDonald")
all_clowns = np.flip(all_clowns)
all_clowns = np.delete(all_clowns, 2)
print("clowns is: {}".format(clowns))
print("more_clowns is: {}".format(more_clowns))
print("all_clowns is: {}".format(all_clowns))

clowns is: ['Bozo' 'Krusty']
more_clowns is: ['Pennywise' 'Happy Slappy' 'Skelton']
all_clowns is: ['Ronald' 'Skelton' 'Pennywise' 'Krusty' 'Bozo']

9.7. CHARACTERS WITHIN A STRING 85

An excellent exercise to help cement your understanding of the ideas
in this chapter would be to go through the above “clowns” code line
by line, drawing the memory picture as you go, and then confirm
that your output matches the actual output.

Yes, an excellent exercise indeed!

9.7 Postlude: characters within a string

These two chapters have dealt with arrays, but let me say a word
at this point about strings, and how they can be made to act like
arrays in some respects.

I mentioned earlier in the book (p. 15) that strings, though normally
treated as atomic, sometimes tiptoe up to the “atomic/aggregate”
line and even cross it. In other words, we will occasionally look at
individual parts of a string variable rather than the entire thing as
one lump.

The way we access individual characters within a string is actually
the same boxie notation we use for arrays. So this code:

antihero = "Light Yagami"
print(antihero[0])
letter1 = antihero[6]
letter2 = antihero[7]
print("{}{}{}".format(letter1,letter2,letter1))

will give this output:

L
YaY

As you can see, string indexes use the same starting-at-zero non-
sense that arrays do. Hey, at least it’s consistent.

This is actually another example of overloading. Just as the len()
function means two different things, depending on whether you’re
asking for the length of an array or the length of a string (recall

86 CHAPTER 9. ARRAYS IN PYTHON (2 OF 2)

p. 73), so the boxie notation means two different things. You’re ei-
ther getting a specific element out of an array, or a specific character
out of a string.

9.8 Summary

The table in Figure 9.5 gives the promised summary of the array
functions, methods, and operators in this chapter.

Function Description

len(arr) Get the number of elements in the array arr.

arr[17] Get a specific element’s value from the array arr.

arr[8] = (something) Set a specific element of the array arr.

arr + 91 Add a value to each element of arr, yielding a new array.
(Also works with -, *, /, etc.)

arr1 + arr2 Add each pair of values in two arrays, yielding a new
array. (Also works with -, *, /, etc.)

arr1 = arr2 Make arr1 point to the same data that arr2 points to.
(Not a copy!)

arr1 = arr2.copy() Make arr1 point to a new, independent copy of arr2.

arr.sort() Sort the array arr in place. (Numerical or alphabetical,
depending on the .dtype.)

np.sort(arr) Return a new array with the sorted elements of arr. (Nu-
merical or alphabetical, depending on the .dtype.)

np.append(arr, elem) Return a new array with elem tacked on to the end.

np.append(arr1, arr2) Return a new array with the two arrays arr1 and arr2
concatenated.

np.insert(arr, ind, val) Return a new array with the new value val inserted into
position ind of arr.

np.delete(arr, ind) Return a new array with the element at index ind re-
moved from arr.

np.flip(arr) Return a new array with arr in reverse order.

Figure 9.5: Handy NumPy functions, methods, and operators.

9.8. SUMMARY 87

The answer

Oh, and the answer to the puzzle on p. 75 – and also the answer to
Life, the Universe, and Everything, as it turns out – is 42.

Chapter 10

Interpreting Data

Let’s take an intermission from the nitty-gritty Python stuff and
talk about how to properly interpret the data we’re working with;
specifically, how to draw correct conclusions from what we’ve col-
lected.

10.1 Independent and dependent variables

You’ve undoubtedly seen countless studies that claim to reveal im-
portant truths about the world, such as that smoking can cause lung
cancer, greenhouse gas emissions can cause higher global tempera-
tures, or orgasms can cure hiccups. Much of the time, scientists try
to find a causal factor that links one variable to another: they sus-
pect that the value of a variable A (often called the independent
variable, or “i.v.” for short) is a reason, or cause, of a certain
value in another variable B (the dependent variable, or “d.v.”).

Just to avoid misunderstandings, when we claim that A causes B,
we don’t normally mean that it exclusively causes it, or even that
it reliably causes it. There are lots of contributing factors to lung
cancer besides smoking, after all; and tons of smokers never develop
cancer. We simply mean that A is a contributing factor to B, and
that the value of the A variable exerts some, but not total, influence
over the value of the B variable.

Importantly, we’re using the word variable here in a different, but

89

90 CHAPTER 10. INTERPRETING DATA

related way than we used it in chapters 3, 8, and 9. As we did
in chapter 6 (see p. 43 footnote), we use “variable” here to mean a
specific aspect of the objects of a study that can differ, or “vary.”
The objects in our study (often people, but sometimes companies,
organizations, environments, nations, etc.) each have a value for the
variable. Thus if you think of a “per-capita income” variable, you
might think of an entire array of floats, each of which represented
the average income-per-resident of a single nation.

The variables in question can be from any of the scales of measure
from chapter 6. Take the smoking example, with patients as the
object of study. We might say that independent variable A is cat-
egorical, with values SMOKER and NON-SMOKER. The dependent vari-
able B is also categorical: CANCER and NO-CANCER. The key question
is: do people with A = SMOKER also have B = CANCER more often (a
higher percentage of the time) than people with A = NON-SMOKER
do?

In the greenhouse gas emissions example, our objects of study
might be years. Our variables are both numeric, with A (a mea-
sure of yearly greenhouse gas emissions, measured in gigatonnes
CO2) on the ratio scale, and B (average worldwide temperature in-
crease/decrease) on an interval scale. Here, the question would be:
do years in which A is relatively high typically also have B relatively
high? Put another way: do years in which earthlings have released
more gas into the atmosphere tend to correspond with years in
which the global temperature increased?

And of course, we might have one categorical variable and one nu-
meric. Perhaps our objects of study are American adults, and while
our categorical A variable has values DEMOCRAT, REPUBLICAN, OTHER,
and INDEPENDENT, our numerical B is yearly income. Our question
would be: do adherents of one political party tend to be more
wealthy than those of another?

Or, flipping sides, the independent variable A could be numeric
while the dependent variable B is categorical. Our objects of study
might be high school seniors applying to UMW. Let A be the num-
ber of different colleges a student applied to, and B a categorical
variable with values ADMITTED-TO-UMW and NOT-ADMITTED-TO-UMW.

10.2. ASSOCIATION AND CAUSALITY 91

The question of interest is here is: do students who apply to more
colleges tend to get in to UMW more often?

10.2 Association and causality

All of the above questions can be answered with data. In future
chapters, we’ll learn the exact Python commands to ask them, and
how to interpret the answers.

For now, I merely want to draw your attention to the fact that these
are all questions of association, not causation. An association
between variables merely means that they are correlated in some
way statistically.1 If A = SMOKER goes with B = CANCER more often
than A = NON-SMOKER does, then there is an association between
the two, period. If yearly income B is on average higher for A =

REPUBLICAN than for A = DEMOCRAT, then there is an association
between the two, period.

(By the way, a key nuance will turn out to be: how much more
often does A = SMOKER need to go with B = CANCER in order for us
to be confident that there is a true association? Or how much more
wealthy do the A = REPUBLICANs need to be on average for us to
have confidence we’ve identified a real link to political party? That
one’s a little tricky, and we’ll postpone addressing it for now.)

So anyway, the question of association turns out to be pretty straight-
forward to answer. Python will simply tell us if variables are as-
sociated or not. More difficult, however, is determining causality
(a.k.a. causation). Does a person’s political affiliation influence
how much wealth they have? Or is it the other way around: does a
person’s wealth cause them to vote a certain way? Or is it neither
of these, with some third factor (perhaps values, or life philosophy)
helping determine both variables?

If the first of these three is the case, we would write “A → B,”
pronounced “A causes B”. If the second, we’d write, “B → A,” and

1Another way to put this is to say that the variables are dependent on
each other, although this is confusing because we’re already using the word
“dependent” to refer to one of the variables.

92 CHAPTER 10. INTERPRETING DATA

for the third, we’d write “C → A,B” for some other (possibly yet to
be determined) variable C. Determining which (if any) of these is
true calls for some careful thinking, intuition, and additional kinds
of statistical tests.

In fact, just to blow your mind, Figure 10.1 gives a partial list of
the various types of causation that could be the true explanation,
once we find out that A and B have an association. As you can see,
there are a lot of ways to go wrong. Only one of the possibilities is
that “A actually causes B,” which is what we suspected in the first
place. The others are all ways of producing that same association
we picked up in the data.

10.3 Confounding factors

Let me speak to two of the items in the Figure 10.1 table in par-
ticular. The third one on the list, external causation, is a case
where a third variable (call it C) comes into play. We refer to this
as a confounding factor (or confounding variable) because it
“confounds” us: causes us to interpret the meaning behind the data
in an incorrect way. The example in the table is a famous and funny
one: clearly sharks don’t react to Ben & Jerry’s daily net profits,
and people (probably) don’t run out and buy ice cream to cope
with their anxiety about shark attacks. Neither A→ B nor B → A,
but a third variable – hot days – influence both of them.

Now of course it’s not always this obvious. Here’s an example I ran
across recently. A magazine article reported on a new health scare:
scientists have discovered that eating barbecue can increase your
risk of cancer. Pictorially, this claim is illustrated in the causal
diagram in Figure 10.2 (flip to p. 94), which shows our i.v. and
our d.v. ; the arrow means exactly what it meant earlier.

Unlike sharks and ice cream, this one seems plausible. And I’m not
claiming to have read enough about their study to tell whether the
researchers’ claim is bogus. But I couldn’t help thinking that there
are a great many possibly confounding factors that could be blurring
the results. For one, choosing to eat barbecue a lot is probably
often associated with a less healthy, higher-fat diet in general (I can
speak from experience on that). If that’s true, and if high-fat diets

10.3. CONFOUNDING FACTORS 93

Symbology Name Example

A→ B causation Regular exercise does indeed nor-
mally lead to a lower resting heart
rate.

B → A reverse causation Smoking doesn’t cause depression;
depression causes smoking.

C → A,B
external causation
(confounding factor)

Ice cream sales don’t cause shark at-
tacks; high temperatures boost both
ice cream sales and ocean swim-
ming.

A→ B & C → B multiple causation A liberal arts education does im-
prove critical thinking skills, but lots
of other things do too.

A,C → B joint causation
Just being tall doesn’t necessarily
make you a good basketball player,
but if your height is accompanied by
another factor as well (athleticism),
then you will be.

A→ C → B indirect causation
People who use antiperspirant tend
to get more dates, but it’s not be-
cause of the antiperspirant per se;
it’s because they don’t have an un-
pleasant odor.

A /→ B spurious association
Although for many years the out-
come of the Washington football
game immediately preceding a Pres-
idential election predicted the elec-
tion’s outcome, that was by coinci-
dence.

Figure 10.1: Various types of causality that could be the underlying reason
why an association between A and B exists.

– whether featuring lots of barbecue or not – are associated with
these same poor health outcomes, then we’d have the picture on the
left-side of Figure 10.3 (also on p. 94). The red bubble represents
the confounding factor, which is influencing both i.v. and d.v. If
this picture were the correct one of the underlying phenomenon,
then the correlation we thought were picking up between barbecue
and cancer was actually due to fat content.

94 CHAPTER 10. INTERPRETING DATA

Figure 10.2: A hypothesis as to causality: eating barbecued foods increases
one’s risk for certain types of cancer.

Another example is the right-hand side of Figure 10.3, below. Per-
haps barbecue is more popular culturally in some areas of the coun-
try (say, the South, where I certainly see it eaten a lot), and per-
haps those areas have other environmental factors that can lead to
cancer. In this case, the “South” confounder indirectly affects the
d.v. (via another variable, the environment) but it still affects it.

It’s not hard to think of others. These were just the first two that
came to mind. The point is that it’s really hard to be sure you’ve
thought of all of them!

Paranoia and overparanoia

All this should lead you to be somewhat paranoid, but not over -
paranoid. Confounding variables can definitely lead us to make
mistakes in our reasoning, but perhaps they’re not quite as common
as you think. Understand that a confounding factor is not simply
any other factor that affects the dependent variable. Instead, for a
variable to be confounding it must affect both the independent
and the dependent variable.

Figure 10.3: Other hypotheses as to causality, each resulting in the same
associations in the data, yet involving confounding factors.

10.3. CONFOUNDING FACTORS 95

Let me illustrate with an example. I suspect that on average, men
are taller than women. And I further suspect that there’s causality
here, and that it goes from A (sex) to B (height), not the other way
around. (Clearly people don’t spontaneously “turn male” because
they reach a certain height.) So my thinking on the subject is
summed up in Figure 10.4.

Figure 10.4: Stephen’s hypothesis: a person’s biological sex (male or fe-
male) plays a causal role in determining their height.

Now let me show you what I mean by “overparanoia.” What if
someone said, “but wait, Stephen, not so fast! You’ve got poten-
tial confounding variables out the wazoo! Why, surely heredity
plays some role in a person’s height – tall parents are more likely
to have tall offspring, just due to genetics. And nutrition, too, is
a factor: it’s been demonstrated that impoverished communities
suffering from malnutrition will have children with stunted growth.
And heck, if you’re born at a high elevation (like Nepal), there’s less
gravitational pull dragging your body down to earth, so it stands
to reason that you’ll probably grow taller. And on and on!” Fig-
ure 10.5 depicts this (supposed) scientific nightmare.

But plausible as some of those theories are, they are not confound-
ing variables! These are simply other factors that may affect the
d.v. Sure, they may also play a causal role in determining a per-
son’s height, but they do not invalidate our finding about sex and
height.

For them to truly be confounders, they would have to affect the
yellow and the green variable, and I’m pretty sure they do not.
Do tall parents tend to bear more sons, and short parents more
daughters? If not, this isn’t a confounder. Do boys have more
nutritious diets than girls? (In some parts of the world, that may

96 CHAPTER 10. INTERPRETING DATA

Figure 10.5: Oh geez – confounding variables galore? No!

unfortunately be true, but I don’t believe it is in our country.) So
that one isn’t a confounder either. Having additional causes of an
effect does not nullify a genuine effect. Only a lurking variable that
pulls the marionette strings of both i.v. and d.v. can do that.

10.4 Dealing with confounding factors

Confounding factors are evil, and we must deal with them seriously.
There are essentially two ways to do that: one that requires us to
be smart, and one that requires us to have money.

Controlling for a confounding factor

If we anticipate that a certain variable may be a confounding factor,
we can control for it. There are several techniques for this, some
of which you’ll learn in your statistics class, but the simplest one
to understand involves stratification.

Let’s make a silly example this time. We’ll go back to the earlier
pinterest theme. I think I’ve noticed over the past few years that
the heavy pinterest users I know seem to almost always have long
hair. I’ve developed a hypothesis about this, which involves theories
about how protein filaments in follicles with longer protrusions lead
to certain chemical changes in the brain. These mind alterations, if
unchecked, lead to increased creativity, craftiness, and a desire to
share artistic creations with other like-minded individuals. Further,

10.4. DEALING WITH CONFOUNDING FACTORS 97

these aesthetic desires manifest themselves in increased usage of the
pinterest.com website, as measured in number of logins per day.

My theory is thus reflected in the causal diagram in Figure 10.6.
Study it carefully.

Figure 10.6: A theory about how hair length impacts the number of times
a person logs on to pinterest each day.

Now of course this follicle stuff is bogus. I’m using an extreme
example to make a point. Quick, can you come up with a possible
confounding factor? Yeah, drr: gender. It’s undoubtedly true that
women tend to (but don’t always) have longer hair than men, and
it’s undoubtedly true that pinterest.com is a website that tends
to appeal to (but not exclusively to) women. And causality-wise,
the arrows obviously flow from gender, not to it: the pinterest login
screen doesn’t change your gender, and a man won’t turn into a
woman simply by growing his hair long (although a transgender
woman might grow her hair long as a signal of her underlying gender
change.)

Put that all together, and you get the much more plausible causal
diagram in Figure 10.7.

Now then. Controlling for a confounding variable through strati-
fication is done by considering the objects of the study in groups,
comparing only those who have the same (or similar) value for the
confounding variable.

In this case, we would separate the men from the women in our
study. Looking at just the men, we would ask, “is longer hair as-
sociated with frequency of pinterest logins?” Then we would do
the same, looking at just the women. Only if Python reported that
both of these separate groups illustrated such a trend would we

98 CHAPTER 10. INTERPRETING DATA

Figure 10.7: An alternative theory that holds that a person’s gender influ-
ences both their long-haired-ness and their pinterest-ness.

(tentatively) conclude, “hair length itself does play a role in causing
pinterest activity, even when controlling for gender.”

Do the thought experiment to see if you agree. I know the whole
follicle theory struck you as dumb (and hopefully, a little funny) to
begin with. “Of course,” you said to yourself, “it’s gender, not hair
length, that’s drawing users to pinterest, dummy!” But suppose
we did perform that stratification technique, and discovered that
the association actually did hold in both cases. Would that give
it more credence in your mind? It ought to. By stratifying, we’ve
eliminated gender from the picture entirely, and now we’re faced
with the facts that those with longer hair – regardless of gender –
log on to pinterest more often.

Now I wrote the word “tentatively” a couple paragraphs ago, be-
cause there are still some caveats. For one, we don’t actually know
that the causality goes in the stated direction. Removing the gender
confounder, we confirmed that there is still an association between
hair length and pinterest, but that association might translate into
a B → A phenomenon. Perhaps users who log on to pinterest a
lot see a lot of long-haired users, and (consciously or not) decide
to grow their own hair out as a result? That actually sounds more
plausible than the original silly theory. Either way, we can’t confirm
the direction just by stratifying.

10.4. DEALING WITH CONFOUNDING FACTORS 99

The other caveat is even more important, because it’s more perva-
sive: just because we got rid of one confounding variable doesn’t
mean there aren’t others. The whole “control for a variable” ap-
proach requires us to anticipate in advance what the possible con-
founding factors would be. This is why I said back on p. 96 that
this approach requires the experimenter to be smart.

Running a controlled experiment

The other way to deal with confounding variables is to run a con-
trolled experiment instead of an observational study. I jok-
ingly said on p. 96 that this option requires the experimenter to
have money. Let me explain.

An observational study is one in which data is produced by nat-
urally occurring processes (we’ll call them data-generating pro-
cesses, or DGPs) and then collected by the researcher. Crucially,
the experimenter plays no role in influencing what any of the vari-
able values are, whether that be the i.v. , the d.v. , other related
variables, or even possible confounders. Everything just is what it
is, and the researcher is simply observing.

Now at first this sounds like the best of all possible worlds. Scien-
tists are supposed to be objective, and to do everything they can to
avoid biasing the results, right? True, but the sad fact is that every
observational study has potential confounding factors and there’s
simply no foolproof way to account for them all. If you knew them
all, you could potentially account for them. But in general we don’t
know. It all hinges on our cleverness, which is a bit like rolling the
dice.

A controlled experiment, on the other hand, is one in which the
researcher decides what the value of the i.v. will be for each object of
study. She normally does this randomly, which is why this technique
is called randomization.

Now controlled experiments bear some good news and some bad
news. First, the good news, which is incredibly good, actually: a
controlled experiment automatically eliminates every possible con-
founding factor, whether you thought of it or not. Wow: magic!

100 CHAPTER 10. INTERPRETING DATA

We get this boon because of how the i.v. works. The researcher’s
coin flip is the sole determinant of who gets which i.v. value. That
means that no other factor can be “upstream” of the coin flip and
influence it in any way. And this in turn nullifies all possible con-
founding factors, since as you recall, a confounder must affect both
the i.v. and the d.v.

The catch is that controlled experiments can be very expensive to
run, and in many cases can’t be run at all. Consider the barbecue
example from p. 92. To carry out a controlled experiment, we would
have to:

1. Recruit participants to our study, and get their informed con-
sent.

2. Pay them some $$ for their trouble.
3. For each participant, flip a coin. If it comes up heads, that

person must eat barbecue three times per week for the next ten
years. If it’s tails, that person must never eat barbecue for the
next ten years.

4. At the end of the ten years, measure how many barbecuers
and non-barbecuers have cancer.

There’s a question of this even being ethical: if we suspect that
eating barbecue can cause cancer, is it okay to “force” participants
to eat it? Even past that point, however, there’s the expense. Ask
yourself: if you were a potential participant in this experiment, how
much money would you demand in step 2 to change your lifestyle
to this degree? You might love barbecue, or you might hate it, but
either way, it’s a coin flip that makes your decision for you. That’s
a costly and intrusive change to make.

Other scenarios are even worse, because they’re downright impos-
sible. We can’t flip coins and make (at random) half of our ex-
perimental subjects male and the other half female. We can’t (or
at least, shouldn’t) randomly decide our participants’ political af-
filiations, making one random half be Democrats and the others
Republicans. And we certainly can’t dictate to the nations of the
world to emit large quantities of greenhouse gases in some years
and small quantities in others, depending on our coin flip for that
year.

10.5. SPURIOUS ASSOCIATIONS 101

Bottom line: if you can afford to gather data from a controlled
experiment rather than an observational study, always choose to
do so. Unfortunately, it won’t always be possible, and we’ll have
to rest on the uneasy assumption that we successfully predicted in
advance all the important confounding variables and controlled for
them.

10.5 Spurious associations

Okay, back to Figure 10.1 on p. 93. The other item I’d like to
point out in that table is the last one, which is called a spurious
association. This is written as “A /→ B,” with the arrow crossed
out. And it simply means “nope, none of the above: these variables
actually aren’t associated at all.”

You might be scratching your head at that one. Didn’t I tell you
(p. 91) that Python is smart enough to tell us definitively whether
or not two variables are associated? That was supposed to be the
easy part; the hard part was only in figuring out what causes that
association. But now I’m saying that associations might not be
associations, and Python is powerless to know the difference!

The root cause of this state of affairs is obvious once you see it,
and it has to do with the “how much more?” questions from p. 91.
Clearly, when we collect data, there’s a “luck of the draw” compo-
nent ever-present. I might have data that suggests Republican vot-
ers have higher income than Democratic voters...but it’s of course
possible that I just happened to poll some richer Republicans and
some poorer Democrats. Suppose I told you I thought women were
on average smarter than men, and in my random sample the aver-
age men’s IQ was 102.7 and the average woman’s was 103.5. The
women’s was indeed greater...but is that enough greater? Is the
difference explainable simply by the randomness of my poll?

The true answer is that we can never know for absolute certainty,
unless we can poll the entire population. (Only if we measured the
IQ of every man and every woman on planet Earth, and took the
means of both groups, could we say which one truly had the higher
mean.) But what we have to do is essentially “set a bar” somewhere,

102 CHAPTER 10. INTERPRETING DATA

and then determine whether we got over it. We could say “only if
the average IQ difference is greater than 5 points will we conclude
that there’s really a difference.”

Setting α

Now the procedure for determining how high to put the “bar” is
more complicated and more principled than that. We don’t just
pick a number that seems good to us. Instead, Python will put
the bar at exactly the right height, given the level of certainty we
decide to require. Some things that influence the placement of the
bar include the sample size and how variable the data is. The thing
we specify in the bar equation, however, is how often we’re willing
to draw a false conclusion.

That quantity is called “α” (pronounced “alpha”) and is a small
number between 0 and 1. Normally we’ll set α = .05, which means:
“Python, please tell me whether the average male and female IQs
were different enough for me to be confident that the difference was
truly a male-vs-female thing, not just an idiosyncrasy of the people
I chose for my poll. And by the way, I’m willing to be wrong 5% of
the time about that.”

It seems weird at first – why would we accept drawing a faulty
conclusion 5% of the time? Why not 0%? But you see, we have to
put the bar somewhere. If we said, “I never want to think there’s
an association when there’s not one,” Python would respond, “well
fine, if you’re so worried about it then I’ll never tell you there is
one.” There has to be some kind of criterion for judging whether a
difference is “enough,” and α = .05, which is “being suckered only 1
in 20 times” is the most common value for social sciences. (α = .01
is commonly used in the physical sciences.)

So, the last entry in the Figure 10.1 table means “even though the A
and B variables aren’t really associated at all – if we gathered some
more As and some more Bs, we’d probably detect no association
– you were fooled into thinking there was one because our random
sample was a bit weird.” There’s really no way around this other
than being aware it can happen, and possibly repeating our study
with a different data set to be sure of our conclusions.

Chapter 11

Associative arrays in Python (1 of 3)

Our next trick is to represent associative arrays (review section 7.1
on p. 55 if you need to) in Python. To do so, we will use another
package, which goes by the adorable name “Pandas”:

import pandas as pd

This code should go at the top of your first notebook cell, right
under your “import numpy as np” line. The two go hand in hand.

By the way, just as there were other choices besides NumPy ndarrays
to represent ordinary arrays, there are other choices in Python for
associative arrays. The native Python dict (“dictionary”) is an ob-
vious candidate. Because this won’t work well when the data gets
huge, however, and because using Pandas now will set up our usage
of tables nicely in the next few chapters, we’re going to use the
Pandas Series data type for our associative arrays.

11.1 The Pandas Series

A Series is conceptually a set of key-value pairs. The keys are
normally homogeneous, and so are the values, although the keys
might be of a different type than the values. Any of the three
atomic types are permissible for either.

103

104 CHAPTER 11. ASSOC. ARRAYS IN PYTHON (1 OF 3)

Somewhat confusing is that the Pandas package calls the keys “the
index,” which is an overlap with the term we used for ordinary
arrays (see p. 7.1). It’s not a total loss, though, since if you think
hard about it, you’ll realize that in some sense, a regular array is
really just an associative array with consecutive integer keys. Oooo,
deep. If you study the two halves of Figure 11.1, I think you’ll
agree.

Figure 11.1: An ordinary array, and an associative array, that represent
the same information.

Creating Serieses

Here are a few common ways of creating a Pandas Series object
in memory.

Way 1: create an empty Series

Perhaps this first one sounds dumb, but we will indeed have oc-
casion to start off with an empty Series and then add key/value
pairs to it from there. The code is simple:

my_new_series = pd.Series()

Voilà.

11.1. THE PANDAS SERIES 105

Way 2: pd.Series([], index=[])

As with NumPy ndarrays, we can explicitly list the values we want
in a new Series. We also have to list the index values (the keys).
The syntax for doing so is:

alter_egos = pd.Series(['Hulk','Spidey','Iron Man','Thor'],
index=['Bruce','Peter','Tony','Thor'])

This creates the Series shown in Figure 11.2.

Figure 11.2: A Pandas Series in memory.

Be careful to keep all your boxies and bananas straight. Note that
both the keys and the values are in their own sets of boxies.

We can print (smallish) Serieses to the screen to inspect their
contents:

print(alter_egos)

Bruce Hulk
Peter Spidey
Tony Iron Man
Thor Thor
dtype: object

106 CHAPTER 11. ASSOC. ARRAYS IN PYTHON (1 OF 3)

Also, as we did on p. 63, we can inquire as to both the overarch-
ing type of alter_egos and also to the kind of underlying data it
contains:

print(type(alter_egos))
print(alter_egos.dtype)

pandas.core.series.Series
object

Just as it did on p. 71, the “object” here is just a confusing way of
saying “str”. Don’t read anything more into it than that.

Way 3: “wrapping” an array

Associative arrays, and the Pandas Serieses we’ve been using to
implement them, are inherently one-dimensional data structures.
This is just like the NumPy arrays we used before. Pandas Serieses
also provide a bunch of features for manipulating, querying, com-
puting, and even graphing aspects of their content. It’s a lot of rich
stuff on top of plain-old NumPy.

For this reason, it’s common to want to create a Series that just
“wraps” (or encloses) an underlying NumPy ndarray, and provides
all that rich stuff.

The way to do this is simple:

my_numpy_array = np.array(['Ghost','Pumpkin','Vampire','Witch'])
my_pandas_enhanced_thang = pd.Series(my_numpy_array)

You can then treat my_pandas_enhanced_thang as an ordinary ag-
gregate variable which has the more sophisticated operations of next
chapter automatically glommed on to it. The keys (index values)
of this thang will simply be the integers 0 through 3.

11.1. THE PANDAS SERIES 107

Way 4: pd.read_csv()

Finally, there’s reading data from a text flie, which as I mentioned
back in section 8.2 (p.68) is actually the most common. Data typ-
ically resides in sources and files external to our programming en-
vironment, and we want to do everything we can to play ball with
this open universe.

One common data format is called CSV, which stands for comma-
separated values. Files in this format are normally named with a
“.csv” extension. As the name suggests, the lines in such a file con-
sist of values separated by commas. For example, suppose there’s
a file called disney_rides.csv whose contents looked like this:

Pirates of the Carribean,25
Small World,20
Peter Pan,29

These are the current expected wait time (in minutes) for each of
these Disney World rides at some point of the day.

To read this into Python, we use the pd.read_csv() function. It’s
a bit awkward since it has several mandatory arguments if you want
to deal with Serieses. Here’s how it works:

wait_times = pd.read_csv('disney_rides.csv', index_col=0,
squeeze=True, header=None)

Most of that junk is just to memorize for now, not to fully under-
stand. If you’re curious, index_col=0 tells Pandas that the first
(0th) column – namely, the ride names – should be treated as the
index for the Series. The header=None means “there is no sepa-
rate header row at the top of the file, Pandas, so don’t try to treat it
like one.” If our .csv file did have a summary row at the top, con-
taining labels for the two columns, then we’d skip the header=None
part. Finally, “squeeze=True” tells Pandas, “since this is so skinny

108 CHAPTER 11. ASSOC. ARRAYS IN PYTHON (1 OF 3)

anyway – just two columns – let’s have pd.read_csv() return us
a Series, rather than a more complex DataFrame object (which is
the subject of Chapter 16).”

Chapter 12

Associative arrays in Python (2 of 3)

K, now we can create Serieses; let’s figure out what we can do
with them.

12.1 Accessing individual elements

We can use the len() function, which we’ve already learned two
uses for, in yet a third way: to ascertain the number of key/value
pairs in a series. Using the Figure 11.2 example (p. 105):

print(len(alter_egos))

4

Accessing the value for a given key uses exactly the same syntax
that NumPy arrays used (boxies), except with the key in place of
the numeric index:

superhero = alter_egos['Peter']
print("Pssst...Peter is really {}.".format(superhero))

Pssst...Peter is really Spidey.

109

110 CHAPTER 12. ASSOC. ARRAYS IN PYTHON (2 OF 3)

This is why it’s important that the keys of an associative array be
unique. If we type “alter_egos['Peter'],” we need to get back
one well-defined answer, not an ambiguous set of alternatives.1 The
values, on the other hand, may very well not be unique.

To overwrite the value for a key with a new value, just treat it as a
variable and go:

alter_egos['Bruce'] = 'Batman'
print(alter_egos)

Bruce Batman
Peter Spidey
Tony Iron Man
Thor Thor
dtype: object

This same syntax works for adding an entirely new key/value pair
as well:

alter_egos['Diana'] = 'Wonder Woman'
print(alter_egos)

Bruce Batman
Peter Spidey
Tony Iron Man
Thor Thor
Diana Wonder Woman
dtype: object

1Pandas, which tries to be All Things To All People™, will actually let you
have duplicate index values in a Series. What does it do if you ask for “the”
value of Peter, then, if there’s more than one? It gives you back another Series
of the different Peter superheroes. This is a major pain, because now when
you look up a value in the Series, you don’t know whether you’ll get back a
single item or another Series, which means you have to check to see which one
it is, and then write different code to handle the two cases...yick. Just stay far,
far away. Make all your keys unique.

12.1. ACCESSING INDIVIDUAL ELEMENTS 111

It’s just like with ordinary variables, if you think about it. Saying
“x=5” overwrites the current value of x if there already is an x,
otherwise it creates a new variable x with that value.

Finally, to outright remove a key/value pair, you use the del oper-
ator:

del alter_egos['Tony']
print(alter_egos)

Bruce Batman
Peter Spidey
Thor Thor
Diana Wonder Woman
dtype: object

Bye bye, Iron Man.

Don’t get mad when I tell you that all of the above operations work
in place on the Series, which is very different than some of the
“return a modified copy” style we’ve seen recently. Hence all of
these attempts are wrong :

alter_egos = del alter_egos['Tony'] <--- WRONG!
alter_egos = alter_egos['Bruce'] = 'Batman' <--- WRONG!
alter_egos = alter_egos['Diana'] = 'Wonder Woman' <--- WRONG!

You don’t “change a value and get a new Series”; you just “change
it.”

Accessing by position

One slightly weird thing you can do with a Pandas Series is ig-
nore the key (index) altogether and instead use the number of the
key/value pair to specify what value you want. This gives me the
heebie-jeebies, because as I explained back on p. 57, there really

112 CHAPTER 12. ASSOC. ARRAYS IN PYTHON (2 OF 3)

isn’t any meaningful “order” to the key/value pairs of an associa-
tive array. In true All Things To All People™ fashion, however,
Pandas lets you do this.

Accessing a value by position

You can ask for the value of (say) “the second” superhero. To do
so, you use the bizarrely-named .iloc syntax:

a_hero = alter_egos.iloc[1]
print(a_hero)

Spidey

This is occasionally useful, so I mention it for completeness. The
.iloc numbers start with 0 (not 1) as is true throughout Python.

Accessing a key by position

Similarly, you can get the key (as opposed to the value) of the
key/value pair at a particular position. To ask for the key of “the
second” superhero, you use the .index syntax:

a_secret_hero = alter_egos.index[1]
print(a_secret_hero)

Peter

12.2 Vectorized arithmetic operators

As with NumPy ndarrays, you can apply arithmetic operators like
+ and * to entire Serieses at a time, which is not only easy code
to write but also runs blazing fast. But the Pandas Series is even
smarter than that.

Consider the memory picture in Figure 12.1. Here we have two
Serieses, one pointed to by a salaries variable and the other by

12.2. VECTORIZED ARITHMETIC OPERATORS 113

Figure 12.1: Two Serieses in memory

raises, which are of different sizes and which have overlapping,
but not identical, sets of keys. What do you suppose Pandas would
do if we executed this code?

new_salaries = salaries + raises

The answer, happily, is the smartest possible thing it could do.
Pandas gets neither confused nor stifled by the fact that the keys
are in different orders in the two Serieses, and instead it does what
you surely want: add corresponding elements, with matching keys,
and produce a new Series with all of those sums.

The actual result in this case is in Figure 12.2, and the output is
here:

new_salaries = salaries + raises
print(new_salaries)

114 CHAPTER 12. ASSOC. ARRAYS IN PYTHON (2 OF 3)

Figure 12.2: The result of +’ing two Serieses that don’t have all the same
keys.

Dwight 71.5
Jim NaN
Michael 129.5
Pam 69.0
Robert NaN
Ryan NaN
dtype: float64

Convince yourself that Dwight’s $68,000 salary got added to his
$3,500 raise, that Michael’s $113,000 salary was added to his $16,500
raise, etc.

Don’t get freaked out by those NaN entries just yet. The special
value “NaN” stands for “not a number,” and basically means
that Pandas has to throw up its hands in that case. And with good
cause. Jim has a current salary of $100,200 in the first Series, but
has no value at all in the second one (no raise for Jim this year?
Haven’t decided what his raise will be yet? Something else?) So
Pandas does the safe thing, shrugs, and says “dunno.” We say that
the Jim entry in the new_salaries Series is a missing value.
The same is true for Robert and Ryan, each of whom was present

12.2. VECTORIZED ARITHMETIC OPERATORS 115

in only one of the two operands.

Now I know what you’re thinking: “can’t Pandas just assume the
salary and/or raise is 0 if there’s a missing one?” The answer is that
yes it can, but it won’t do so unless you give the go-ahead. Pandas is
being cautious here, and doesn’t want to introduce errors into your
data stream by false assumptions. (Maybe in your company, for
instance, there’s a default entry-level salary that every employee
receives who’s unspecified in the salary Series. Or maybe the
yearly raise is always assumed to be a flat 2.5% cost-of-living raise
unless explicitly specified.)

If we do want Pandas to assume a certain default value, we have
to change tactics a bit and go with the add() function (or sub(),
mul(), or div()):

new_salaries = pd.Series.add(salaries, raises, fill_value=0)
print(new_salaries)

Dwight 71.5
Jim 100.2
Michael 129.5
Pam 69.0
Robert 100.0
Ryan 68.0
dtype: float64

The fill_value argument is the important one here: it specifies
what default value to use if one of the addends is missing a key
from the other. Now the result is as in Figure 12.3. You can, of
course, choose a fill_value other than zero, if you wish.

As with NumPy arrays, we can add (or subtract, or multiply, ...) a
single atomic value to a series as well:

cost_of_living_increase = salaries * .025
print(cost_of_living_increase)

116 CHAPTER 12. ASSOC. ARRAYS IN PYTHON (2 OF 3)

Figure 12.3: Using add() instead, and passing a fill_value.

Michael 2.825
Dwight 1.700
Pam 1.675
Jim 2.505
Ryan 1.700
dtype: float64

salaries = salaries + cost_of_living_increase
print(salaries)

Michael 115.825
Dwight 69.700
Pam 68.675
Jim 102.705
Ryan 69.700
dtype: float64

It can sometimes be useful to do string concatenation as well, for
instance if we had employee first names and last names in two
Serieses with their employee ID as the index:

12.3. COPYING SERIESES 117

firsts = pd.Series(['Hannibal', 'Clarice', 'Multiple',
'Buffalo'], index=[666, 1993, 47, 988])

lasts = pd.Series(['Starling', 'Crawford', 'Lecter', 'Bill',
'Miggs'], index=[1993, 1650, 666, 988, 47])

print(firsts + " " + lasts)

47 Multiple Miggs
666 Hannibal Lecter
988 Buffalo Bill
1650 NaN
1993 Clarice Starling
dtype: object

12.3 Copying Serieses

The rules for copying (or not copying) Serieses are exactly the
same as for NumPy arrays (see Section 9.4 on p. 79). If you merely
assign one Series object to another variable, the two variables
will be pointing to the same Series in memory, which means that
changes to one will be reflected in the other. Calling the .copy()
method, however, creates an entirely new Series in memory.

Make sure you understand the following output to confirm your
understanding of this:

slayers = pd.Series([120, 72, 200], index=['Buffy','Xander','Willow'])
anti_vamps = slayers
good_guys = slayers.copy()
anti_vamps['Rubert'] = 150
print(slayers)

Buffy 120
Xander 72
Willow 200
Rubert 150
dtype: int64

print(anti_vamps)

118 CHAPTER 12. ASSOC. ARRAYS IN PYTHON (2 OF 3)

Buffy 120
Xander 72
Willow 200
Rubert 150
dtype: int64

print(good_guys)

Buffy 120
Xander 72
Willow 200
dtype: int64

(The numbers here are approximate IQs; don’t mean to be a hater.)

12.4 Sorting Serieses

Sorting is slightly more complex than for arrays, since there are two
things we might want to sort by: the Series’ index, or the values
themselves. Correspondingly, there are two methods: .sort_index()
and .sort_values():

print(anti_vamps.sort_index())

Buffy 120
Rubert 150
Willow 200
Xander 72
dtype: int64

print(anti_vamps.sort_values())

Xander 72
Buffy 120
Rubert 150
Willow 200
dtype: int64

12.4. SORTING SERIESES 119

Like NumPy’s np.sort() function (but unlike its .sort() method;
refer back to Section 9.5 on p. 81 for details), neither of these meth-
ods actually sort the Series in place; instead, they return sorted
copies. However, they can be made to work in place, by including
“inplace=True” as an argument:

heroes_dumb_to_smart = anti_vamps.sort_values()
print(heroes_dumb_to_smart)

Xander 72
Buffy 120
Rubert 150
Willow 200
dtype: int64

print(anti_vamps)

Buffy 120
Xander 72
Willow 200
Rubert 150
dtype: int64

anti_vamps.sort_values(inplace=True)
print(anti_vamps)

Xander 72
Buffy 120
Rubert 150
Willow 200
dtype: int64

Another useful feature of both .sort_X methods is the ability to
reverse sort. By adding “ascending=False” as an argument (with
or without also including the “inplace=True” argument; they are
combinable with a comma) you produce the reverse order:

120 CHAPTER 12. ASSOC. ARRAYS IN PYTHON (2 OF 3)

heroes_smart_to_dumb = anti_vamps.sort_values(ascending=False)
print(heroes_smart_to_dumb)

Willow 200
Rubert 150
Buffy 120
Xander 72
dtype: int64

anti_vamps.sort_index(inplace=True, ascending=False)
print(anti_vamps)

Xander 72
Willow 200
Rubert 150
Buffy 120
dtype: int64

12.5 Concatenating and combining

Finally, it is sometimes convenient to be able to combine two or
more Serieses into a single one. But there’s a catch. Remember
that in order for a Series to “work properly,” its keys must be
unique. Combining two Series which share at least one of the
same keys is a recipe for disaster!

The syntax for doing so, when the coast is clear, uses the .append()
method:

crazy_example = salaries.append(slayers)
print(crazy_example)

12.6. SUMMARY 121

Michael 113.0
Dwight 68.0
Pam 67.0
Jim 100.2
Ryan 68.0
Xander 72.0
Willow 200.0
Rubert 150.0
Buffy 120.0
dtype: float64

Nothing untoward happened here because The Office and Buffy
don’t have any overlapping character names. Note that the values
all got converted to float (instead of int), to enforce homogeneity.
Note also that salaries itself did not change as a result of this
.append() call; instead, a new Series was returned that contains
all the items.

12.6 Summary

All the functions from this chapter are summarized in Figure 12.4.

122 CHAPTER 12. ASSOC. ARRAYS IN PYTHON (2 OF 3)

Function Description

len(ser) Get the number of key/value pairs in the Series ser.

ser['Five Guys'] Get the value of a specific key from the Series ser.

ser.iloc[73] Treating the key/values pairs in the Series ser as
ordered, get a specific numbered (from 0) value.

ser.index[73] Treating the key/values pairs in the Series ser as
ordered, get a specific numbered (from 0) key.

ser['Firehouse'] = ... Set the value for a key of the Series ser.

ser['New Rest'] = ... Add an additional key/value pair to the Series ser.
(Same syntax as the previous.)

ser + 13 Add a quantity to each value of ser, yielding a new
Series. (Also works with -, *, /, etc.)

ser1 + ser2 Add pairs of values that have matching keys in two
Serieses, yielding a new Series. Use NaN for the
value of any key that doesn’t appear in both ser1
and ser2. (Also works with -, *, /, etc.)

pd.Series.add(ser1,
ser2, fill_value=x) Add pairs of values that have matching keys in two

Serieses, yielding a new Series. Use x for any miss-
ing values. (Also works with sub(), mul(), div(),
etc.)

ser1 = ser2 Make ser1 point to the same data that ser2 points
to. (Not a copy!)

ser1 = ser2.copy() Make ser1 point to a new, independent copy of ser2.

ser.sort_index() Return a copy of the Series ser which is sorted by
the keys. Can also pass “inplace=True” to change
ser itself, and/or pass “ascending=False” to get re-
verse order.

ser.sort_values() Same as above, except that sorting is done with re-
spect to values, not keys.

ser1.append(ser2) Return a new Series with ser1’s and ser2’s
key/value pairs smooshed together. (Bad things may
happen if ser1 and ser2 share some of the same keys.)

Figure 12.4: Handy functions, methods, and operators for Pandas
Serieses.

Chapter 13

Associative arrays in Python (3 of 3)

But wait, there’s more! We can also use methods like .min(),
.max(), .idxmin(), and .idxmax() to get the “extremes” of a
Series – i.e. the lowest and highest values in a Series, or their
keys (indexes). Note that .idxmin() does not give you the lowest
key in the Series! Instead, it gives you the key of the lowest value.
Study this code snippet and its output to test your understanding
of this:

understanding = pd.Series([15,4,13,3,7], index=[4,10,2,12,9])
print(understanding)
print("The min is {}.".format(understanding.min()))
print("The max is {}.".format(understanding.max()))
print("The idxmin is {}.".format(understanding.idxmin()))
print("The idxmax is {}.".format(understanding.idxmax()))

4 15
10 4
2 13
12 3
9 7
dtype: int64

The min is 3.
The max is 15.
The idxmin is 12.
The idxmax is 4.

123

124 CHAPTER 13. ASSOC. ARRAYS IN PYTHON (3 OF 3)

The idxmin and idxmax are 12 and 4, respectively, since the small-
est value in the series (the 3) has a key of 12, and the largest value
(the 15) has a key of 4.

If we did actually want the lowest (or highest) key, we could use
the .index syntax (see p. 112) to achieve that:

print("The lowest key: {}.".format(understanding.index.min()))
print("The highest key: {}.".format(understanding.index.max()))

The lowest key: 2.
The highest key: 12.

And remember that “lowest”/“highest” for string data means alpha-
betical order.

13.1 Queries

One of the most powerful things we’ll do with a data set is to query
it. This means that instead of specifying (say) a particular key,
or something like “the minimum” or “the maximum,” we provide
our own custom criteria and ask Pandas to give us all values that
match. This kind of operation is also sometimes called filtering,
because we’re taking a long list of items and sifting out only the
ones we want.

The syntax is interesting: you still use the boxies (like you do when
giving a specific key) but inside the boxies you put a condition
that will be used to select elements. It’s best seen with an example.
Re-using the understanding variable from above, we can query it
and ask for all the elements greater than 5:

more_than_five = understanding[understanding > 5]
print(more_than_five)

13.1. QUERIES 125

4 15
2 13
9 7
dtype: int64

The new thing here is the “understanding > 5” thing inside the
boxies. The result of this query is itself a Series, but one in which
everything that doesn’t match the condition is filtered out. Thus
we only have three elements instead of five. Notice the keys didn’t
change, and they also had nothing to do with the query: our query
was about values.

We could change this, if we were interested in putting a restriction
on keys instead, using the .index syntax:

index_more_than_five = understanding[understanding.index > 5]
print(index_more_than_five)

10 4
12 3
9 7
dtype: int64

See how tacking on “.index” in the query made all the difference.

Query operators

Now I have a surprise for you. It makes perfect sense to use the
character “>” (called “greater-than,” ”right-angle-bracket,” or simply
”wakka”) to mean “greater than.” And the character “<” makes sense
as “less than.” Unfortunately, the others don’t make quite as much
sense. See the top table in Figure 13.1.

“Greater/less than or equal to” isn’t hard to remember, and it’s
a good thing Python doesn’t require symbols like “≤” or “≥” since
those are hard to find on your keyboard. You just type both symbols
back-to-back, with no space. More problematic are the last two

126 CHAPTER 13. ASSOC. ARRAYS IN PYTHON (3 OF 3)

entries in the top table. The “!=” operator (pronounced “bang-
equals”) is used as a stand-in for “≠” which also isn’t keyboard
friendly. And that one doesn’t have a good mnemonic; you just
have to memorize it.

By far the most error-prone of this set is the “==” (double-equals)
operator, which simply means “equals.” Yes, you do have to use
double-equals instead of single-equals in your queries, and
yes it matters. As additional incentive, let me inform you that if
you use single-equals when you needed to use double-equals, it will
seem to work at first, but you will silently get the wrong answer.

Memorize this fact! Failing to use double-equals is quite possibly
the single most common programming error for beginners.

Simple query operators:

Symbol Meaning

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

== equal to

Compound query operators:

Symbol Meaning

& and

| or

~ not

Figure 13.1: Query operators: simple and compound

Here are some more examples to test your understanding. Make
sure you understand why each output is what it is.

13.1. QUERIES 127

understanding = pd.Series([15,4,13,3,7], index=[4,10,2,12,9])
print(understanding[understanding <= 7])

10 4
12 3
9 7
dtype: int64

print(understanding[understanding != 13])

4 15
10 4
12 3
9 7
dtype: int64

print(understanding[understanding == 3])

12 3
dtype: int64

print(understanding[understanding.index >= 9])

10 4
12 3
9 7
dtype: int64
dtype: int64

128 CHAPTER 13. ASSOC. ARRAYS IN PYTHON (3 OF 3)

Compound queries

Often, your query will involve more than one criterion. This is called
a compound condition. It’s not as common with Serieses as it
will be with DataFrames in a couple chapters, but there are still
uses for it here.

Suppose I want all the key/value pairs of understanding where the
value is between 5 and 14. This is really two conditions masquerad-
ing as one: we want all pairs where (1) the value is greater than
5, and also (2) the value is less than 14. I put the word “and” in
boldface in the previous sentence because that’s the operator called
for here. We only want elements in our results where both things are
true, and therefore, we “and together the two conditions.” (“And”
is being used as a verb here.)

The way to achieve this is as follows. The syntax is nutty, so pay
close attention:

x = understanding[(understanding > 5) & (understanding < 14)]
print(x)

2 13
9 7
dtype: int64

First, notice that we put each of our two conditions in bananas
here. This is not optional, as it turns out: you’ll get a non-obvious
error message if you omit them. Second, see how we combined the
two with the “&” operator from the bottom half of Figure 13.1. The
result, then, was only the elements that satisfied both conditions.

It can be tricky to figure out whether you want an and or an or.
Unfortunately they don’t always correspond to their colloquial En-
glish usage. Let’s see what happens if we switch the “&” symbol to
a “|” (pronounced “pipe”):

13.1. QUERIES 129

y = understanding[(understanding > 5) | (understanding < 14)]
print(y)

4 15
10 4
2 13
12 3
9 7
dtype: int64

You can see that we got everything back. That’s because or means
“only give me the elements where either one of the conditions, or
both, are true.” In this case, this is guaranteed to match everything,
because if you think about it, every number is either greater than
five, or less than fourteen, or both. (Think deeply.)

Even though in this example it didn’t do anything exciting, an “or”
does sometimes return a useful result. Consider this example:

z = understanding[(understanding.index > 10) | (understanding > 5)]
print(z)

4 15
2 13
12 3
dtype: int64

Here we’re asking for all key/value pairs in which either the key is
greater than ten, or the value is greater than ten, or both. This
reeled in exactly three fish as shown above. If we changed this “|”
to an “&”, we’d have caught no fish. (Take a moment to convince
yourself of that.)

The last entry in Figure 13.1 is the “~” sign, which is pronounced
“tilde,” “twiddle,” or “squiggle.” It corresponds to the English word
not, although in an unusual place in the sentence. Here’s an exam-
ple:

130 CHAPTER 13. ASSOC. ARRAYS IN PYTHON (3 OF 3)

a = understanding[~(understanding.index > 10) | (understanding > 10)]
print(a)

4 15
10 4
2 13
9 7
dtype: int64

Search for and stare at the squiggle in that line of code. In English,
what we said was “give me elements where either the key is not
greater than ten, or the value is greater than ten, or both.” The
four matching elements are shown above.

Changing the “or” back to an “and” here gives us this output instead:

b = understanding[~(understanding.index > 10) & (understanding > 10)]
print(b)

4 15
2 13
dtype: int64

These are the only two rows where both conditions are true (and
remember that the first one is “not-ted.”)

It can be tricky to get compound queries right. As with most things,
it just takes some practice.

Queries on strings

So far our examples have involved only numbers. Pandas also lets us
perform queries on text data, specifying constraints on such things
as the length of strings, letters in certain positions, and case (up-
per/lower).

Let’s return to the Marvel-themed series from section 11.1:

13.1. QUERIES 131

alter_egos = pd.Series(['Hulk','Spidey','Iron Man','Thor'],
index=['Bruce','Peter','Tony','Thor'])

By appending “.str” to the end of the variable name, we can get
access to most of the string-based methods we’d like to use. For
instance, find all the values with exactly four letters:

four_letter_names = alter_egos[alter_egos.str.len() == 4]
print(four_letter_names)

Bruce Hulk
Thor Thor
dtype: object

or all the values that contain a space:

spaced_out = alter_egos[alter_egos.str.contains(' ')]
print(spaced_out)

Tony Iron Man
dtype: object

or all the keys whose first character is a T:

to_a_tee = alter_egos[alter_egos.index.str.startswith('T')]
print(to_a_tee)

Tony Iron Man
Thor Thor
dtype: object

or all entries where either the value is greater than five letters long
or the key is the same as the value:

132 CHAPTER 13. ASSOC. ARRAYS IN PYTHON (3 OF 3)

huh = alter_egos[(alter_egos.str.len() > 5) |
(alter_egos.index == alter_egos)]

print(huh)

Peter Spidey
Thor Thor
dtype: object

The possibilities are endless. Some of the more common functions
are summarized in Figure 13.2.

Function Description

ser.str.len() Set a condition on the length of a string.

ser.str.startswith(str) Request only strings that begin with certain let-
ter(s).

ser.str.endswith(str) Request only strings that end with certain let-
ter(s).

ser.str.contains(str) Request only strings that contain certain letter(s)
somewhere in them.

ser.str.isupper() Request only strings that are in all upper-case.

ser.str.islower() Request only strings that are in all lower-case.

Figure 13.2: Common query methods for string data.

Last word

A couple things before we move on. You’ve noticed that in all the
above examples, it was necessary to type the Series variable name
several times:

understanding[(understanding < 12) | (understanding > 18)]
alter_egos[(alter_egos.str.isupper()) & (alter_egos.str.len() < 10)]

There’s really no way around that, sorry; you just have to get used
to it. A very common beginner error is to try and write this:

13.1. QUERIES 133

understanding[understanding < 12 | > 18]

This seems to make perfect sense, especially since it mimics the
natural English sentence: “give me all values where understanding
is less than 12 or greater than 18.” Unfortunately, it doesn’t work
like that in Python. The rule is: each side of an and or an or must
be a complete sentence. The phrase “understanding is greater than
18” counts as a complete sentence, but “is greater than 18” does not.

Also, whenever I see a line of code that specifies a key to a Series
(or array), I mentally pronounce the opening boxie (“[”) as the word
“of”. So when I read:

print(x[5])

I say to myself “print x of five.”

However, whenever I see a query, I mentally pronounce the boxie
as the word “where”. So when I read:

print(x[x > 12])

I say to myself “print x where x is greater than 12.” I’ve found
this helpful in making sense of the meaning of queries, since they’re
complicated enough as it is!

Chapter 14

Loops

It’s time for our first look at a non-linear program. Up to now, all
of our Python programs have executed step-by-step, start to finish,
like a metronome, with each line of code getting executed exactly
once. That’s about to change. In this chapter, we introduce the
concept of a loop, which is a programming construct that directs
lines of code to be executed repeatedly, and out of strict sequence.

14.1 The two species of loops

Although some programming languages try to dress them up fur-
ther, there are really only two fundamental kinds of loops in the
world: fixed-iteration loops and variable-iteration loops.1 The
first kind is simpler to understand and less error-prone; in most lan-
guages (Python included) it is implemented as a “for loop.” The
tricker, second kind is available to programmers as a “while loop.”

Happily for us, it turns out that while loops don’t come up much
in Data Science, at least in the beginning. There are some more ad-
vanced techniques that use them (for instance, optimization meth-
ods and threshold detection) but for us it’s going to be for loops
that dominate the landscape. So let’s figure out how they work.

1Sometimes these are called counter-controlled and condition-
controlled loops, respectively.

135

136 CHAPTER 14. LOOPS

14.2 A word of caution

But before we embark, a cautionary note. Some of the things that
loops can do – especially the early examples – can also be done
using the queries of the last chapter. For instance, we could use a
query to find all the strings in a Series that begin with the letter
T, or we could use a loop to do the same thing.

Here’s the rule: if you can do it without a loop, that is al-
ways preferred. There are two reasons for this. First, it’s less
code to write, and less error-prone, to use Pandas’ built-in features
rather than crafting a loop yourself. That’s why they created those
features (like queries) after all.

Second, and ultimately even more important, using a Pandas func-
tion is much faster to execute than a loop. The reason has to do
with how a loop is eventually broken down into the little instruc-
tions a machine can understand: when Python runs a loop, it plods
through the steps methodically, whereas the Pandas functions are
all pre-baked into a water-cooled rocket engine that can jet out of
the gate.

You don’t need to know any of those nitty-gritty details. All you
have to remember is: don’t ever resort to using a loop unless you
can’t figure out how to do what you want without one. (And un-
fortunately, there are indeed those times.)

14.3 Iterating through an array

Most often, we’ll use a for loop to “loop through,” or “iterate
through,” the contents of an aggregate data variable. This means
that instead of executing a snippet of code once, we’ll execute it
once per element of the variable. This “once per element” thing is
what makes the code non-linear.

Let’s start with the first aggregate data type we learned, a NumPy
array.

14.3. ITERATING THROUGH AN ARRAY 137

1: villains = np.array(['Jafar','Ursula','Scar','Gaston'])
2: print("Here we go!")
3: for v in villains:
4: print("Oooo, {} is scary!".format(v))
5: print("({} has {} letters.)".format(v, len(v)))
6: print("Whew!")

(I’ve numbered the lines in this example so I can refer to them in
the text below, but the numbers and colons aren’t part of Python.)

Immediately after creating our villains array, and printing an
introductory message, we encounter our first loop. A loop consists
of two parts: the loop header and the loop body. Here are the
rules:

• The loop header consists of the line that begins with “for”.
• The loop body consists of all of the consecutive following lines
that are indented (tabbed-over) one tab.2

That second rule turns out to be more important than it seems at
first. A very (very!) common error among beginners is to “mis-
indent” their code such that their loop body includes more, or less,
than they mean it to. So heads up.

Before we continue, stare at that code above and convince yourself
of these two facts:

R The loop header is line 3.
R The loop body is lines 4 and 5. (Not line 4 only! Not lines

4, 5, and 6!)

Now the reason this is important is that a for loop works as follows:

2Other programming languages – every other one I know besides Python,
in fact – uses some other way to designate the loop body than indentation.
Many (R and Java, for instance) use curly braces before and after the loop
body so that the computer knows where it begins and ends. I personally like
this feature of Python’s, but there are haters, and the bottom line is you just
have to get used to it.

138 CHAPTER 14. LOOPS

1. First, create a new variable (on the left-hand side of the mem-
ory picture) named whatever comes immediately after the
word “for”. (In this example, the name of this new variable
will be v.)

2. Then, for each element of the array, in succession:
a) Set that variable’s value to the next element of the array.
b) Execute the entire loop body. (In this example, lines 4–5.)

In the villains example, therefore, the lines in order of execution
are:

1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6.

(Do you agree?)

The memory picture changes constantly throughout any program,
including those that contain loops. Let’s take a snapshot of memory
as it appears immediately after executing line 3 the second time. In
other words, we’ll run the program this far before hitting the pause
button:

1, 2, 3, 4, 5, 3, Freeze!!

Memory at this instant is depicted in Figure 14.1. The second time
we executed line 3, we set v (sometimes called the loop variable,
by the way) to the second element of the array, "Ursula". We’re
just about to execute line 4 for the second time. Note that the
villains array is unaffected by this entire loop process: only our
temporary, made-up loop variable (v) gets a new value each time.

The complete output of the program, as you can easily deduce, is
thus:

14.4. ITERATING THROUGH THE VALUES OF A SERIES 139

Figure 14.1: A snapshot of memory immediately after the second execution
of line 3 of the villains program.

Here we go!
Oooo, Jafar is scary!
(Jafar has 5 letters.)
Oooo, Ursula is scary!
(Ursula has 6 letters.)
Oooo, Scar is scary!
(Scar has 4 letters.)
Oooo, Gaston is scary!
(Gaston has 6 letters.)
Whew!

Don’t miss the fact that the “scary!” and “has n letters” mes-
sages were printed four times each, whereas “Whew!” only appeared
once. That has everything to do with the indentation: it told
Python that lines 4 and 5 were part of the loop body, whereas
line 6 was just “business as usual,” taking place only after all the
loop hoopla was over and done with.

14.4 Iterating through the values of a Series

Great news: if you mastered the previous section, this one and the
next will be a snap. That’s because Python, NumPy, and Pandas
work together to make iterating through a Series pretty much
exactly the same as iterating through an array. In fact, sometimes
you’re not even sure which type you’ve got!

140 CHAPTER 14. LOOPS

Here’s the Marvel Series regurgitated yet again:

alter_egos = pd.Series(['Hulk','Spidey','Iron Man','Thor'],
index=['Bruce','Peter','Tony','Thor'])

Let’s say I want to go through and greet all our heroes. It’s a snap!
(no pun intended):

print("Welcome to the Marvel Cinematic Universe(tm).")
for hero in alter_egos:

print("Greetings, {}!".format(hero))
print("Go team!")

Welcome to the Marvel Cinematic Universe(tm).
Greetings, Hulk!
Greetings, Spidey!
Greetings, Iron Man!
Greetings, Thor!
Go team!

What could be easier?

Notice that “looping through the Series” effectively means “looping
through the values of the Series,” not the keys. What if we want
to loop through the keys instead?

14.5 Iterating through the keys of a Series

I’m glad you asked. But in fact, you already know the answer: just
use the .index syntax from p. 112!

print("Let's iterate through the keys instead:")
for secret_identity in alter_egos.index:

print("Nice to meet you, {}.".format(secret_identity))
print("Carry on...")

14.6. ITERATING THROUGH KEYS/VALUES OF A SERIES 141

Let's iterate through the keys instead:
Nice to meet you, Bruce.
Nice to meet you, Peter.
Nice to meet you, Tony.
Nice to meet you, Thor.
Carry on...

By the way, you can see that the name of the loop variable is com-
pletely at your discretion. I called the previous one “hero” and this
one “secret_identity” just because those names were reflective of
their contents. But it’s really up to you: it has nothing to do with
the name of the Series itself. (Yeah, I know the Marvel identities
aren’t secret anymore, but I’m old school.)

14.6 Iterating through the keys and values
of a Series

Finally, it’s common to need access to both halves of each key/value
pair as you iterate through a Series. The way to accomplish this
is to call the .items() method of the Series. But it’s tricky,
because when you use .items() you assign two variables in your
loop instead of just one.

Before showing the complete loop, let’s focus on just the loop header
needed for this technique:

for secret_identity, hero in alter_egos.items():

I named two loop variables, separated by a comma. The reason I
put secret_identity first is that in this Series, we used Bruce,
Peter, etc. as the keys, with the superhero names as the values.
And with .items(), the variable name you want to use for the key
is listed first.

The rest of the loop follows logically from this, with both variables
available inside the loop body:

142 CHAPTER 14. LOOPS

print("We're now going to recognize some outstanding citizens.")
for secret_identity, hero in alter_egos.items():

print("{}, known to his friends as {}.".format(hero,
secret_identity))

print("The crowd screams: 'YAY {}!'".format(hero.upper()))
print("Thanks, everyone, for your service.")

If we freeze the program just after the third execution of the loop
header this time, we get the picture in Figure 14.2. And the output,
of course, is:

We're now going to recognize some outstanding citizens.
Hulk, known to his friends as Bruce.
The crowd screams: 'YAY HULK!'
Spidey, known to his friends as Peter.
The crowd screams: 'YAY SPIDEY!'
Iron Man, known to his friends as Tony.
The crowd screams: 'YAY IRON MAN!'
Thor, known to his friends as Thor.
The crowd screams: 'YAY THOR!'
Thanks, everyone, for your service.

Figure 14.2: A snapshot of memory immediately after the third execution
of the loop header in the alter_egos program.

14.7. WRAPPING UP 143

14.7 Wrapping up

We can, of course, do much more inside loops than just print things.
We can perform computations galore. The examples in this chapter
were simply to illustrate the structure and behavior of for loops,
so that you have a framework for understanding how more complex
parts fit into them later.

Onward!

Chapter 15

Exploratory Data Analysis:
univariate

The fancy term “Exploratory Data Analysis” (EDA) basically
just means getting acquainted with your data. After importing a
new data set into Python, the first thing you normally do is poke
around to get an idea of what it contains. You may not even know
what questions you eventually want to ask – let alone what the
answers are – but sizing up the data is a necessary precursor to
those activities.

In this chapter, we’ll learn some basic EDA techniques for uni-
variate data, which is really all we’ve studied so far. “Univariate”
means to consider just one variable at a time, rather than possible
relationships between variables. A single (one-dimensional) NumPy
array or Pandas Series is a univariate data set, if you treat it in
isolation. As it turns out, there’s quite a few interesting things you
can do with even something that simple.

First, we’ll look at summary statistics, which are a way to cap-
ture the general features of a data set so you can see the forest in-
stead of just a bunch of trees. Which type of summary information
is appropriate depends on whether you’re dealing with categorical
or numeric data.

145

146 CHAPTER 15. EDA: UNIVARIATE

15.1 Categorical data: counts of occurrences

Let’s say you had access to a poll on people’s favorite pop stars.
You import this into a big ol’ Pandas Series called faves:

print(faves)

0 Katy Perry
1 Rihanna
2 Justin Bieber
3 Drake
4 Rihanna
5 Taylor Swift
6 Adele
7 Adele
8 Taylor Swift
9 Justin Bieber
...
1395 Katy Perry
dtype: object

That’s great, but it’s also kinda TMI. You probably don’t care who
the first person’s idol is, nor the fifteenth, nor the last. Much more
interesting is simply how many times each value appears in the
Series. This information is available from the Pandas .value_counts()
method:

counts = faves.value_counts()
print(counts)

Taylor Swift 388
Katy Perry 265
Drake 261
Adele 212
Rihanna 136
Justin Bieber 134
dtype: int64

15.1. CATEGORICAL: COUNTS OF OCCURRENCES 147

The .value_counts()method returns another Series, but the val-
ues of the original Series become the keys of the new one. This
tells us at a glance how popular each answer is relative to the others.

To get percentages instead of totals, just divide by the total and
multiply by 100, of course:

print(counts / len(counts) * 100)

Taylor Swift 27.7937
Katy Perry 18.9828
Drake 18.6963
Adele 15.1862
Rihanna 09.7421
Justin Bieber 09.5989
dtype: float64

Recall (p. 45) that themode is the only measure of central tendency
that makes sense for categorical data. And all you have to do is call
.value_counts() and look at the top result. (In this case, Taylor
Swift.)

Note that .value_counts() is a Pandas Series method, not a
NumPy method. If you find yourself with a NumPy array instead,
you can just wrap it in a Series as we did in Section 11.1 (p. 106):

my_array = np.array(['red','blue','red','green','green',
'green','blue'])

print(pd.Series(my_array).value_counts())

green 3
red 2
blue 2
dtype: int64

148 CHAPTER 15. EDA: UNIVARIATE

15.2 Numerical data: quantiles

A quantile is a real number between 0 and 1 that represents a “cut
point” of a numerical data set: roughly speaking, it’s the number
for which a certain fraction of the values are less than that number.
So the “.2-quantile” (pronounced “point two quantile”) of a variable
containing the heights of third-graders might be 50 inches. If that’s
the case, it would indicate that 20% of the third-graders are less
than 50 inches tall.

Quantiles are very revealing, but underappreciated. Most people
don’t seem to know how to interpret them. But once you figure it
out, you’ll realize that quantiles tell you almost everything possible
to know about a numeric variable: by dialing the quantile between
0 and 1, you can tell exactly how common values in certain ranges
are.

In Python, you simply call the .quantile() method on a Series,
passing a number between 0 and 1 as an argument, and it tells you
exactly where that cut point is.

Now there’s a little bit of weirdness around the edges, depending
on the exact definition used to calculate the quantiles. Let’s say
I collected some salary data, and got these responses (“k” means
“thousand dollars per year,” and “M” means “million dollars per
year”):

35k 22k 67k 45k 35k 8M 94k 51k 53k 64k 54k

How would I calculate, say, the .7-quantile? First, sort the numbers:

22k 35k 35k 45k 51k 53k 54k 64k 67k 94k 8M

(yes, we do include the 35k value twice; don’t eliminate duplicates)
and then spread out the quantiles “evenly” from 0 to 1:

value: 22k 35k 35k 45k 51k 53k 54k 64k 67k 94k 8M
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

quantile: .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

15.2. NUMERICAL DATA: QUANTILES 149

Don’t get picky on me. If you were picky, you could quibble at
saying “the .3-quantile is 45k” since it’s technically not true that
30% of the values are less than 45k: in truth, 3 out of 11 (27.3%)
of them are. Whatever, whatever. The point is that 45k is at the
“cut point” that’s 3

10ths of the way through the values from min to
max. Quantiles aren’t about laser precision anyway: they’re about
understanding the general pattern of the data.

“Special” quantiles

You’ll realize as an immediate consequence of the above that the
median is just another name for the .5-quantile. It’s the value for
which half the data points are below it, and half above. Also, the 0-
quantile is just the minimum of the data set, and the 1-quantile
the maximum.

Other kinds of “-tiles”

This whole idea may ring bells with other names for you: quartiles,
quintiles, deciles, or (most probably) percentiles. All of those are
basically special cases of quantiles. They split the data into evenly-
sized groups:

• “quartiles”: split the data into four groups, with the split
points being the .25-, .5-, and .75-quantiles.

• “quintiles”: split the data into five groups, with the split points
being the .2-, .4-, .6, and .8-quantiles.

• “deciles”: split the data into ten groups, with the split points
being the .1-, .2-, .3-, .4-, .5-, .6-, .7-, .8-, and .9-quantiles.

• “percentiles”: split the data into 100 groups, with the split
points being the .01-, .02-, .03-, ..., .98-, and .99-quantiles.

Be careful to understand that “evenly-sized groups” does not mean
“groups with the same-sized range,” but rather “groups with the
same number of data points in them.” Normally, in fact, the ranges
will not be the same size. The lowest quintile for a data set of IQs
might range from 47 (the lowest IQ in the data set) all the way up
to 83, whereas the IQs in the middle quintile might all be in the
narrow range 96 to 104.

150 CHAPTER 15. EDA: UNIVARIATE

The IQR (interquartile range)

Speaking of quartiles, you’ll commonly hear data scientists cite the
IQR, or interquartile range, as a measure of how widely varying
a univariate data set is. It’s simply the distance between the .25-
quantile and the .75-quantile; or in quartile terms, the difference
between the “upper” and “lower” quartiles.

Because of how quantiles work, exactly 50% of the data points
are between the .25- and .75-quantiles. This means that the more
spread out the data points are, the larger the IQR, and vice versa.
In this sense, it’s akin to the standard deviation (see p. 153) which
you may be familiar with.

A quantile example

Let’s nail this down with an example. I have a (fictitious) data set
containing the number of YouTube plays for each of a selection of
videos. It’s called num_plays. Here are the first few values:

0 791
1 3133
2 0
3 1789
4 297
5 219
6 1688
7 209
8 422
9 91454
dtype: int64

That’s great, but it’s both too much information and too little: we
can pore through the plays for every single video, but it’s hard to
get our head around what the overall contents are. So let’s run
some quantiles. We’ll start with the .1-quantile:

print(num_plays.quantile(.1))

15.2. NUMERICAL DATA: QUANTILES 151

0.0

Whoa. The .1-quantile is zero. Think about what that means.
Pictorially, sorting the data would give this:

value: 0 0 0 0 0 0 0 0 ⋯ 0 0 ⋯

↑ ↑

quantile: .0 .1

Put another way, that means that (at least) 10% of our videos have
no plays at all.

Let’s try the .2-quantile:

print(num_plays.quantile(.2))

15.0

Okay, now at least we have a pulse. But in case we thought this
was data set was packed with big hits, think again: a full 20% of
these videos have fewer than 15 plays.

The median is:

print(num_plays.quantile(.5))

263.0

That’s quite a bit higher. How about the 90% mark?

print(num_plays.quantile(.9))

1378.0

152 CHAPTER 15. EDA: UNIVARIATE

All right, so the upper end of these videos are in the thousands.
Finally, let’s look at the max:

print(num_plays.quantile(1))

982221.0

!!

Believe it or not, this sort of thing isn’t unusual, especially with
data from social phenomena. The tiny fraction of the data at the
upper end of the range is vastly higher than everything else is. Get
your head around that: the median number of plays was a couple
hundred, but the maximum number of plays was nearly a million.

Computing the IQR of this data set is as simple as finding the
difference between the .25 and .75 quantiles:

print(num_plays.quantile(.75) - num_plays.quantile(.25))

399.75

15.3 Numerical data: other summary
statistics

That YouTube data set is a good segue to talking about that most
overused of all statistics: the mean. Nearly everyone, if you ask
them “what’s the typical number of plays for these videos?” will
use the mean, or average, to get at the answer. After all, isn’t that
what we mean by “the average number of plays?”

The answer is: not really, and not usually. Look what happens if
we compute the mean (using the .mean() Series method) in this
case:

print(num_plays.mean())

15.3. NUMERICAL DATA: OTHER SUMMARY STATISTICS153

14018.888235294118

Consider just how misleading that really is. The “average” number
of plays is over 14,000. Yet the .9 -quantile was less than 1

10th of
that! In fact, even the .97-quantile is only:

print(num_plays.quantile(.97))

3836.0

So over 97% of the videos have less than the mean of 14,000 plays.
I think you’ll agree that it is nonsensical to claim that “the typical
number of plays is 14,018,” no matter how you slice it.

We’ll see in the next section why the mean is hopelessly skewed
here. Basically, unless the data is symmetrical and “bell-curvy,” it
gives a meaningless number. It is almost always safer and more
illuminating to look at the median (or other quantiles).

For completeness, one other commonly cited summary statistic is
the standard deviation, which can be computed with the .std()
method:

print(num_plays.std())

93031.835

The standard deviation, like the IQR, is a measure of the “spread” of
a data set – a high number means (in this example) higher variabil-
ity in the number of plays from video to video. As with the mean,
it’s essentially meaningless (no pun intended) unless the data is nice
and bell-curve shaped.

Speaking of which, we’ll never be able to judge the “shape” of any-
thing unless we get some graphical plots involved. So let’s turn our
focus to that.

154 CHAPTER 15. EDA: UNIVARIATE

15.4 Plotting univariate data

There are basically two useful ways of plotting a Series with uni-
variate data. In one, you care about the specific labels (i.e. keys,
or “index”) of the values in the Series, and you want them to be
prominent in the plot. In the other, you don’t; you just want to
show the values themselves, so you can visualize how they are dis-
tributed irrespective of what label they might have.

Let’s do the first one first.

Bar charts of labeled data

Let’s read a data set on the world countries with the highest GDP
(Gross Domestic Product). Here’s a CSV file called gdp.csv1:

Nation,Trillions
Italy,2.26
Germany,4.42
Brazil,2.26
United States,21.41
France,3.06
Canada,1.91
Japan,5.36
China,15.54
India,3.16
United Kingdom,3.02

We’ll read that into a Series using our technique from p. 107:

gdp = pd.read_csv('gdp.csv', squeeze=True, index_col=0,
header=None)

print(gdp)

1Recall the caveat about filename extensions in the p. 69 footnote.

15.4. PLOTTING UNIVARIATE DATA 155

0
Nation Trillions
Italy 2.26
Germany 4.42
Brazil 2.26
United States 21.41
France 3.06
Canada 1.91
Japan 5.36
China 15.54
India 3.16
United Kingdom 3.02
Name: 1, dtype: object

and now, we can visualize the relative sizes of these economies with
the .plot() method. The .plot() method takes, among other
things, a “kind” argument which specifies what kind of plot you
want. In this case, a bar chart is the correct thing:

gdp.plot(kind='bar')

156 CHAPTER 15. EDA: UNIVARIATE

There are a zillion ways to customize these plots, and I’ll only men-
tion a very, very few. A more complete list of options is available by
Googling, or going to https://matplotlib.org/3.1.1/api/_as_
gen/matplotlib.pyplot.plot.html

For instance, to make all the bars the same color, we can pass
“color="blue"”. Sorting the values is something we already know
how to do, with .sort_values():

gdp.sort_values(ascending=False).plot(kind='bar')

You see what I mean about “caring about the labels/keys/index”
for this sort of plot: if we hadn’t labeled the bars, the plot would
tell us nothing useful.

I’m sure you’ve seen lots of bar charts in your life, so this is noth-
ing new. But consider how much information is embedded in this
infographic. Not only can we tell that the U.S. and China are the
two biggest economies, we can tell that they are far and away the
two biggest, with Japan and Germany (the next two highest) only
a fraction.

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html

15.4. PLOTTING UNIVARIATE DATA 157

Bar charts of occurrence counts

A very common special case of a bar chart is one where we combine
it with the .value_counts() method. Let’s go back to Taylor
vs. Katy:

print(faves)

0 Katy Perry
1 Rihanna
2 Justin Bieber
3 Drake
4 Rihanna
5 Taylor Swift
6 Adele
7 Adele
8 Taylor Swift
9 Justin Bieber
...
1395 Katy Perry
dtype: object

It would be useful to see an infographic on how popular each celebrity
is, and combining .value_counts() and .plot() makes it a snap:

faves.value_counts().plot(kind='bar',color="orange")

The .sort_values()method wasn’t needed here, because our friend
.value_counts() already returns its answer in decreasing numeri-
cal order. If we wanted the bars in alphabetical order instead, we’d
just sort the Series by index before plotting:

faves.value_counts().sort_index().plot(kind='bar',
color="purple")

These long lines with lots of strung-together methods are concise,
but can also be confusing. It’s always an option to use temporary
variables to store the intermediate results instead:

158 CHAPTER 15. EDA: UNIVARIATE

counts = faves.value_counts()
alphbetical_counts = counts.sort_index()
alphbetical_counts.plot(kind='bar',color="purple")

Just a matter of preference.

15.5. NUMERICAL DATA: HISTOGRAMS 159

15.5 Numerical data: histograms

As I mentioned on p. 154, sometimes we don’t actually care about
the labels in a Series, only the values. This is when we’re trying to
size up how often values of various magnitudes appear, irrespective
of which specific objects of study those values go with.

My favorite plot is the histogram. It’s super powerful if you know
how to read it, but underused because few people seem to know
how. The idea is that we take a numeric, univariate data set, and
divide it up into bins. Bins are sort of the reverse of quantiles:
all bins have the same size range, but a different number of data
points fall into each one.

Suppose we had data on the entire history of a particular NCAA
football conference. A Series called “pts” has the number of points
scored by each team in all that conference’s games. It looks like this:

print(pts)

0 7
1 35
2 40
3 17
4 10
...
399 14
dtype: int64

Some basic summary statistics of interest include:

print("min: {}".format(pts.quantile(0)))
print(".25-quantile: {}".format(pts.quantile(.25)))
print(".5-quantile: {}".format(pts.quantile(.5)))
print(".75-quantile: {}".format(pts.quantile(.75)))
print("max: {}".format(pts.quantile(1)))
print("mean: {}".format(pts.mean()))

160 CHAPTER 15. EDA: UNIVARIATE

min: 0.0
.25-quantile: 17.0
.5-quantile: 25.0
.75-quantile: 32.0
max: 55.0
mean: 23.755

Looks like a typical score is in the 20’s, with the conference record
being a whopping 55 points in one game. The IQR is 32−17, or 15
points.

We can plot a histogram of this Series with this code:

pts.plot(kind='hist')

The result is in Figure 15.1. Stare hard at it. Python has divided
up the points into ranges: 0 through 5 points, 6 through 11 points,
12 through 17, etc. Each of these ranges is a bin. The height of
each blue bar on the plot is simply the number of games in which
a team scored in that range.

Now what do we learn from this? Lots, if we know how to read it.
For one thing, it looks like the vast majority of games have teams
scoring between 12 and 38 points. A few teams have managed to
eke out 40 or more, and there have been a modest number of single-
digit scores or shutouts. Moreover, it appears that scores between
24 and 38 are considerably more common than those between 12
and 24. Finally, this data shows some evidence of being “bell-curvy”
in the sense that values in the middle of the range are more common
than values at either end, and it is (very roughly) symmetrical on
both sides of the median.

This is even more precise information than the quantiles gave us.
We get an entire birds-eye view of the data set. Whenever I’m
looking at a numerical, univariate data set, pretty much the first
thing I do is throw a histogram up on the screen and spend at least
a couple minutes staring at it. It’s almost the best diagnostic tool
available.

15.5. NUMERICAL DATA: HISTOGRAMS 161

Figure 15.1: A histogram of the historical points-per-game for teams in a
certain NCAA football conference.

Bin size

Now one idiosyncrasy with histograms is that a lot depends on the
bin size and placement. Python made its best guess at a decent bin
size here by choosing ranges of 6 points each. But we can control
this by passing a second parameter to the .plot() function, called
“bins”:

pts.plot(kind='hist', bins=30)

Here we specifically asked for thirty bins in total, and we get the
result in Figure 15.2. Now each bin is only two points wide, and as
you can see there’s a lot more detail in the plot.

Whether that amount of detail is a good thing or not takes some
practice to decide. Make your bins too large and you don’t get
much precision in your histogram. Make them too small and the
trees can overwhelm the forest. In this case, I’d say that Figure 15.2

162 CHAPTER 15. EDA: UNIVARIATE

Figure 15.2: The same data set as in Figure 15.1, but with more (and
smaller) bins.

is good in that it tells us something not apparent from Figure 15.1:
there are quite a few shutouts (zero-point performances), not merely
games with six-points-or-less. Whether the trough between 22 and
24 points is meaningful is another matter, and my guess is that part
is obscuring the more general features apparent in the first plot.

The rule is: whenever you create a histogram, take a few minutes to
experiment with different bin sizes. Often you’ll find a “sweet spot”
where the amount of detail is just right, and you’ll get great insight
into the data. But you do have to work at it a little bit.

Non-bell-curvy data

Let’s return again to the YouTube example. We had some surprises
when we looked at the quantiles and saw that the 1-quantile (max)
was astronomically higher than the .9-quantile was. Let’s see what
happens when we plot a histogram (show in Figure 15.3):

15.5. NUMERICAL DATA: HISTOGRAMS 163

num_plays.plot(kind='hist', color="red")

Figure 15.3: A first attempt at plotting the YouTube num_plays data set.

Huh?? Wait, where are all the bars of varying heights? We seem
to have got only a single one.

But they’re there! They’re just so small you can’t see them. If you
stare at the x-axis – and your eyesight is good – you might see tiny
signs of life at higher values. But the overall picture is clear: the
vast, vast majority of videos in this set have between 0 and 100,000
plays.

Let’s see if we can get more detail by increasing the number of bins
(say, to 1000):

num_plays.plot(kind='hist', bins=1000, color="red")

164 CHAPTER 15. EDA: UNIVARIATE

We now get the left-hand side of Figure 15.4. It didn’t really help
much. Turns out the masses aren’t merely crammed below a hun-
dred thousand plays; they’re crammed below one thousand. We
need another approach if we’re going to see any detail on the low-
play videos.

Figure 15.4: Further attempts at plotting the YouTube num_plays data
set. On the left side, we decreased the bin size to no avail. On the right
side, we gave up on plotting the popular videos and concentrated only on the
unpopular ones, which does illuminate the lower end somewhat. (Don’t miss
the x-axis ranges!)

The only way to really see the distribution on the low end is to only
plot the low end. Let’s use a query (recall section 13.1 from p. 124)
to filter out only the videos with 1000 plays or fewer, and then plot
a histogram of that:

unpopular_video_plays = num_plays[num_plays <= 1000]
unpopular_video_plays.plot(kind='hist', color="green")

This gives the right-hand side of Figure 15.4. Now we can at least
see what’s going on. Looks like our Series has a crap-ton of videos
that have never been viewed at all (recall our .1-quantile epiphany
for this data set on p.151) plus a chunk that are in the 500-views-
or-fewer range.

The takeaway here is that not all data sets (by a long shot!) are
bell-curvy. Statistics courses often present nice, symmetric data
sets on physical phenomena like bridge lengths or actor heights or

15.6. NUMERICAL DATA: BOX PLOTS 165

free throw percentages, which have nice bell curves and are nicely
summarized by means and standard deviations. But for many social
phenomena (like salaries, numbers of likes/followers/plays, lengths
of Broadway show runs, etc.) the data looks more like this YouTube
example. A few extremely large values dominate everything else by
their sheer magnitude, which makes it more difficult to wrap your
head around.

It also makes it more challenging to answer the question, “what’s the
typical value for this variable?” It ain’t the mean, that’s for sure.
If you asked me for the “typical” number of plays of one of these
YouTube videos, I’d probably say “zero” since that’s an extremely
common value. Another reasonable answer would be “somewhere in
the low hundreds,” since there are quite a few videos in that range,
as illustrated by the right-hand-side of Figure 15.4. But you’d be
hard-pressed to try and sum up the entire data set with a single
typical value. There just isn’t one for stuff like this.

15.6 Numerical data: box plots

Let’s talk about one more type of plot in this chapter, even though
it’s really most useful when dealing with bivariate data, as we’ll ad-
dress in chapter 20. It’s called the box plot (also known as a “box-
and-whisker” plot). We can create one by passing “kind="box"”
to the .plot() method (here for the NCAA football data):

pts.plot(kind="box")

The result is shown in Figure 15.5, along with some annotations in
red so you can figure out what’s going on.

For now, don’t worry about the mysterious word “None” at the
bottom. (This indicates which “group” the box represents, and will
feature prominently in our bivariate data chapter.) For a univariate
data set like this one, the x-axis has no meaning. The y-axis, on
the other hand, is easy to understand: it’s the number of points per
football game.

166 CHAPTER 15. EDA: UNIVARIATE

Figure 15.5: A box plot of the NCAA points data.

Now the thing to realize about box plots is that they’re essentially
just a graphical way of showing quartiles; or, put another way, a
graphical way of showing these five quantiles:

• The 0-quantile (the minimum value) is the y-value of the bot-
tom “whisker.”

• The .25-quantile is the y-value of the bottom of the “box.”
• The .5-quantile (the median) is the y-value of the horizontal

line within the box.
• The .75-quantile is the y-value of the top of the “box.”
• The 1-quantile (the maximum value) is the y-value of the top

“whisker.”

Using your quantile knowledge from section 15.2, you’ll realize the
following fact: the box alone contains exactly half the data points.
This is a key insight. While the whiskers show the entire range of
the data, the box shows the middle 50% of it. (And the height of the
box is precisely the IQR.) This makes it very easy to grasp where
the bulk of the data lies, and it reinforces the lesson we learned
from the histogram on this data set (Figure 15.1 on page 161): a

15.6. NUMERICAL DATA: BOX PLOTS 167

big chunk of the time, teams score in the 20’s.

You might object to showing an entire plot for this, since I’ve just
revealed that it’s merely a fancy way to show five numbers. And
you’re right, in a way. However, when we show multiple groups of
data side-by-side, each with their own box, it becomes a particularly
powerful tool. Stay tuned for that.

Outliers

What happens if we show our head-scratching YouTube data set as
a box plot? You get the monstrosity in Figure 15.6.

Figure 15.6: A box plot of a non-bell-curvy data set.

Geez Louise, does that look wacky. The little circles (which to me
always looked like bubbles from fish breath) represent outliers, an
important concept in data science. An outlier is basically any data
point that’s so far out of the normal range that it seems strange.
Python is essentially flagging it for us, so we can judge for ourselves
whether it was a data entry error or just a strange data point. In
this case, these aren’t errors – there’s just a handful of videos that
have been played a ton of times. And this makes the whole box
plot look weird.

168 CHAPTER 15. EDA: UNIVARIATE

Notice from Figure 15.6 that the entire box and both whiskers have
gotten smooshed at the bottom of the figure, as if crushed by the
gravity of a black hole. You’ll see that the top whisker doesn’t
really mean “maximum,” since it’s way down there in thousand-
land despite the fact that we have videos with almost a million
views. The top whisker truly means “the maximum reasonable-
looking data point in the Series,” where “reasonable-looking” is
something Pandas is trying to make an educated guess about. There
are ways to tweak what counts as an outlier, but my purpose here is
just to get you to realize that when you have a highly skewed data
set (like YouTube), prepare to see lots of things that are considered
“outliers,” and prepare to comb through all the mess on your box
plots to try and discern the true meaning it’s trying to convey.

Chapter 16

Tables in Python (1 of 3)

The third of our three aggregate data types from waaaay back in
Chapter 7 was the table. Don’t worry: we haven’t forgotten about
him. In this chapter, we’ll implement him by means of the Pandas
DataFrame, the most important data type in this entire book.

16.1 Reading a DataFrame from a .csv file

Unlike NumPy arrays and Pandas Serieses, which we learned sev-
eral different ways to create, we’re only going to learn one way to
create a DataFrame. That’s because DataFrames are normally big
enough that it’s just too tedious to ever type them in manually.
Instead, we’ll read them from an external source; a .csv file.

We’ll actually use the same read_csv() function that we used in
section 11.1 (p. 107), although oddly, this time we won’t need to
specify as many arguments. Let’s say we have a “davieses.csv”
file with these contents:

person,age,gender,height,instrument
Dad,50,M,73,piano
Mom,49,F,66,flute
Lizzy,21,F,63,guitar
TJ,20,M,71,trombone
Johnny,17,M,72,euphonium

169

170 CHAPTER 16. TABLES IN PYTHON (1 OF 3)

We can read it into a DataFrame with this code:

my_first_df = pd.read_csv("davieses.csv").set_index('person')
print(my_first_df)

age gender height instrument
person
Dad 51 M 73 piano
Mom 49 F 66 flute
Lizzy 21 F 63 guitar
TJ 20 M 71 trombone
Johnny 17 M 72 euphonium

A couple things. First, you may have noticed that the davieses.csv
file had a “header” row. This means that the first line of the file is
not like the others: instead of containing information on a specific
family member, it contains the kind of information for every family
member. It looked like this:

person,age,gender,height,instrument

and you’ll notice that these words (except for the first one; more on
that in a moment) became the column names when we imported the
data. This sort of information, by the way, is called “metadata,”
a geeky-sounding word that basically means “data about data.” If
“Lizzy plays the guitar” is a piece of data, then “family members
play instruments” is a piece of metadata.

Second, don’t miss the ending I tacked on to the read_csv() line,
where I called the .set_index() method on the DataFrame. This
tells Pandas that one of the columns in the DataFrame should be
designated as the index (or the keys).

Back on p. 57 I asserted that unlike associative arrays, tables didn’t
have keys. And that’s true of the general “table” concept. But
Pandas designed their DataFrames to behave in the same way as
their Serieses: one uniquely-valued column will be used to identify
each row.

16.2. MISSING VALUES 171

This choice is usually easy; if you glance back to Figure 7.3 (p. 57),
we’d probably want to choose the screenname as the index (although
a case could be made for the real name column instead). For the
table in Figure 7.4 (p. 59), it would be the item column. In the
DataFrame we just created above, obviously person is the correct
choice – it’s the only one sure to be unique.1

Anyway, designating a column as the index in this way sort of re-
moves it from the other, “ordinary” columns. In the output, above,
you may notice that the word “person” is printed somewhat lower
than the other column names are. It turns out that if we want to
talk about the index column specifically, we’ll need to use a slightly
different technique than we do for the other columns. More on that
next chapter.

Finally, note that calling .set_index() is optional. It’s perfectly
fine to just call pd.read_csv() and leave it at that. In that case,
Pandas will use integers (starting with 0, of course) as the in-
dex/keys.

16.2 Missing values

Let’s change the example to a different family, and a slightly bigger
DataFrame. The “simpsons.csv” file is reproduced below. Do you
notice anything odd about it?

name,species,age,gender,fave,IQ,hair,salary
Homer,human,36,M,beer,74,,52000
Marge,human,34,F,helping others,120,stacked tall,
Bart,human,10,M,skateboard,90,buzz,
Lisa,human,8,F,saxophone,200,curly,
Maggie,human,1,F,pacifier,100,curly,
SLH,dog,4,M,,,shaggy,

What I mean is the positioning of some of the commas. The sharp-
eyed reader will see a “double comma” in Homer’s row. Even a

1With apologies to boxing legend George Foreman, who named all four of
his sons “George.”

172 CHAPTER 16. TABLES IN PYTHON (1 OF 3)

dull-eyed reader will notice several commas in a row in SLH’s2 row.
And nearly every row (the exception being Homer’s) ends with a
comma, which just looks messed up.

This weird punctuation implies the existence of missing values,
which means just what it sounds like: there’s simply no data for
certain columns of certain rows. Homer doesn’t have a “hair” value,
no one but Homer has a “salary” value, and SLH is missing all kinds
of stuff.

When we read this into a Pandas DataFrame a la:

simpsons = pd.read_csv("simpsons.csv").set_index('name')

the result looks like this:

species age gender fave IQ hair salary
name
Homer human 36 M beer 74.0 NaN 52000.0
Marge human 34 F helping others 120.0 stacked tall NaN
Bart human 10 M skateboard 90.0 buzz NaN
Lisa human 8 F saxophone 200.0 curly NaN
Maggie human 1 F pacifier 100.0 curly NaN
SLH dog 4 M NaN NaN shaggy NaN

The missing values come up as NaN’s, the same value you may re-
member from p. 114. The monker “not a number” makes sense for
the salary case, although I think it’s a bit weird for Homer’s hair
(not a number? is hair supposed to be a number?...) At any rate,
we can expect that this will be the case for many real-world data
sets.

“Missing” can mean quite a few subtly different things, actually.
Maybe it means that the value for that object of study was collected,
but lost. Maybe it means it was never collected at all. Maybe it
means that variable doesn’t really make sense for that object, as in
the case of a dog’s IQ. Ultimately, if we want to use the other values
in that row, we’ll have to come to terms with what the missing

2The Simpson’s dog was named “Santa’s Little Helper.”

16.2. MISSING VALUES 173

values mean. For now, let’s just learn a couple of coarse ways of
dealing with them.

One (sometimes) handy method is .dropna(). If you call it, it will
return a modified copy of the DataFrame in which any row with an
NaN is removed. This turns out to be overkill in the Simpson’s case,
though:

print(simpsons.dropna())

Empty DataFrame
Columns: [species, age, gender, fave, IQ, hair, salary]
Index: []

In other words, nothing’s left. (Every row had at least one NaN in
it, so nothing survived.)

We could pass an optional argument to .dropna() called “how”,
and set it equal to "all": in this case only rows with all NaN values
are removed. Sometimes that’s “underkill,” as in our Simpson’s
example: after all, none of the rows are entirely NaN’s, so calling
.dropna(how="all") would leave everything intact.

Another option is the .fillna() method, which takes a “default
value” argument: any NaN value is replaced with the default in the
modified copy returned. Let’s try it with the string "none" as the
default value:

print(simpsons.fillna("none"))

species age gender fave IQ hair salary
name
Homer human 36 M beer 74 none 52000
Marge human 34 F helping others 120 stacked tall none
Bart human 10 M skateboard 90 buzz none
Lisa human 8 F saxophone 200 curly none
Maggie human 1 F pacifier 100 curly none
SLH dog 4 M none none shaggy none

174 CHAPTER 16. TABLES IN PYTHON (1 OF 3)

This is possibly useful, but in this case it’s not a perfect fit because
different columns call for different defaults. The fave and hair
columns could well have “none” (indicating no favorite thing, and
no hair, respectively) but we might want the default salary to be
0. The way to accomplish that is to change the individual columns
of the DataFrame. Here goes:

simpsons['salary'] = simpsons['salary'].fillna(0)
simpsons['IQ'] = simpsons['IQ'].fillna(100)
simpsons['hair'] = simpsons['hair'].fillna("none")
print(simpsons)

species age gender fave IQ hair salary
name
Homer human 36 M beer 74.0 none 52000.0
Marge human 34 F helping others 120.0 stacked tall 0.0
Bart human 10 M skateboard 90.0 buzz 0.0
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0
SLH dog 4 M NaN 100.0 shaggy 0.0

Here we’ve assumed that the default IQ, for someone who hasn’t
taken the test, is 100 (the average). I left the NaN in fave as is,
since that seemed appropriate.

By the way, that code is actually more than it may appear at first.
When we execute a line like:

simpsons['salary'] = simpsons['salary'].fillna(0)

we’re really saying “please replace the salary column of the simpsons
DataFrame with a new column. That new column should be – wait
for it – the existing salary column but with zeros replacing the
NaN’s.”

We’ll see many more cases of changing DataFrame columns whole-
sale in the following chapters.

16.3. REMOVING ROWS/COLUMNS 175

16.3 Removing rows/columns

Finally, after reading a .csv file into a DataFrame, there are times
when you want to manually delete certain rows and/or columns
that are not going to be of interest.

The easiest syntax for deleting a row (say, Santa’s Little Helper) is:

simpsons = simpsons.drop('SLH')

The .drop() method takes the index of the undesired row as an
argument, Like most of the methods we’ve seen so far, it returns
a modified copy of the DataFrame it’s called on, so you have to
reassign this to the original variable (or use the inplace=True ar-
gument).

You can even delete multiple rows at the same time by enclosing
the undesired indices in boxies:

simpsons = simpsons.drop(['Homer','Marge','SLH'])

Deleting a column is even more common, since many tables “in the
wild” have many, many columns, only a few of which you may care
about in your analysis. You can whack one entirely with the del
operator, just like we did for Serieses (p. 111):

del simpsons['IQ']

Chapter 17

Tables in Python (2 of 3)

It’s easy to get tripped up on Pandas’ syntax for accessing the
individual bits of DataFrames. First, let’s talk about rows and
columns, and then we’ll talk about the atomic elements (“cells”)
themselves.

17.1 Accessing individual rows and columns

Suppose you have a DataFrame called df. Here’s how you can ex-
tract particular rows and columns:

• df.loc[i] – access the row with index i
• df.iloc[n] – access row number n
• df[c] – access column c

The second of these is reminiscent of the .iloc syntax we learned
for Serieses on p. 112. With it, we specify the number we want,
rather than the index/key/label. That’s not super common to do,
but it happens. More common is the first form: we specify the row
we want by its index.

The last one is tricky, because everyone (including me, several times
a week, it seems) assumes that just typing (say) “df[’Bart’]”
would give you Bart’s row. This is probably how it ought to work,
since Serieses worked that way. Alas, no: if you specify neither
.loc nor .iloc, you’re asking for a column, not a row.

177

178 CHAPTER 17. TABLES IN PYTHON (2 OF 3)

Yet another odd thing is how a single row is presented on the screen.
Let’s go back to the simpsons data set (bottom of p. 174), and
access the Bart row the proper way (with .loc):

print(simpsons.loc['Bart'])

species human
age 10
gender M
fave skateboard
IQ 90
hair buzz
salary 0
Name: Bart, dtype: object

This bugs the heck out of me. Bart, like all other Simpsons, was a
row in the original DataFrame, but here, it presents Bart’s informa-
tion vertically instead of horizontally. I find it visually jarring. The
reason Pandas does it this way is that each row of a DataFrame is a
Series, and the way Pandas displays Serieses is vertically. We’ll
deal somehow.

Btw, for any of the three options, you can provide a list with mul-
tiple things you want, instead of just one thing. You do so by using
double boxies:

• df.loc[[i1,i2,i3,. . .]] – access the rows with indices i1, i2,
i3, etc.

• df.iloc[[n1,n2,n3,. . .]] – access the rows numbered n1, n2,
n3, etc.

• df[[c1,c2,c3,. . .]] – access the columns names c1, c2, c3,
etc.

Examples

To test your understanding of all of the above, confirm that you
understand the following examples:

17.1. ACCESSING INDIVIDUAL ROWS AND COLUMNS 179

print(simpsons.iloc[3])

species human
age 8
gender F
fave saxophone
IQ 200
hair curly
salary 0
Name: Lisa, dtype: object

print(simpsons['age'])

name
Homer 36
Marge 34
Bart 10
Lisa 8
Maggie 1
SLH 4
Name: age, dtype: int64

print(simpsons.loc[['Lisa','Maggie','Bart']])

species age gender fave IQ hair salary
name
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0
Bart human 10 M skateboard 90.0 buzz 0.0

print(simpsons.iloc[[1,3,4]])

species age gender fave IQ hair salary
name
Marge human 34 F helping others 120.0 stacked tall 0.0
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0

180 CHAPTER 17. TABLES IN PYTHON (2 OF 3)

print(simpsons[['age','fave','IQ']])

age fave IQ
name
Homer 36 beer 74.0
Marge 34 helping others 120.0
Bart 10 skateboard 90.0
Lisa 8 saxophone 200.0
Maggie 1 pacifier 100.0
SLH 4 NaN 30.0

Incidentally, you’ll notice how the name values are treated differently
from all the other columns, since name is the DataFrame’s index.
For one thing, name always appears, even though it’s not included
among the columns we asked for. For another, it’s listed at the
bottom of the single-row Series listings rather than up with the
other values in that row.

17.2 Accessing individual elements

I mentioned above the eternal truth that each row of a DataFrame
is a Series. Once you grasp this, you’ll realize that you can access
an individual “cell” of a DataFrame simply by getting the row you
want, and then getting the specific value from that. A two-step
process for doing this would be:

lisas_row = simpsons.loc['Lisa']
lisas_iq = lisas_row['IQ']
print(lisas_iq)

200.0

But a shorter, one-stepper just combines these two operations on
the same line:

17.3. ACCESSING A DATAFRAME’S METADATA 181

lisas_iq = simpsons.loc['Lisa']['IQ']
print(lisas_iq)

200.0

17.3 Accessing a DataFrame’s metadata

We can get some meta-information about a DataFrame without even
looking at individual rows. If we want to know what the index
values themselves are, we use .index:

print(simpsons.index)

Index(['Homer', 'Marge', 'Bart', 'Lisa', 'Maggie', 'SLH'],
dtype='object', name='name')

That weird-looking output tells us several things. First, the index
of this DataFrame consists of strings (remember from p. 71 that’s
what “dtype='object'” means). Second, the name of the index
column is, ironically, “name”. (It could be named anything at all, of
course.) Third, the actual index values are Homer, Marge, and all
the rest.

That’s the index, or the “row names,” if you will. To get the column
names, we use .columns:

print(simpsons.columns)

Index(['species', 'age', 'gender', 'fave', 'IQ', 'hair',
'salary'], dtype='object')

182 CHAPTER 17. TABLES IN PYTHON (2 OF 3)

Interestingly, this too is an “Index” beast, also comprised of strings.
Pandas treats both “axes” of a DataFrame similarly, in that both of
them are the same type of thing (an “Index”). Notice that name is
not present in the column names list, because as the DataFrame’s
index it’s a different sort of thing.

How many rows does a DataFrame have? This is answerable by
using the len() function again:

print(len(simpsons))

6

This is our third use of the word len(): it can be used to find the
number of characters in a string, the number of key/value pairs of
a Series, and (here) the number of rows of a DataFrame.

Finally, we often want to get a quick sense of how large a DataFrame
is, both in terms of rows and columns. The .shape syntax is handy
here:

print(simpsons.shape)

(6, 7)

This tells us that simpsons has six rows and seven columns. As I
mentioned previously (p. 56) this is definitely not the typical case:
most DataFrames will have many more rows (thousands or even
millions) than columns (at most, dozens).

17.4 Sorting DataFrames

Sorting a DataFrame is largely like sorting a Series, except we have
more choices: instead of just the keys and the values, we have the
index and potentially many different columns.

17.4. SORTING DATAFRAMES 183

The .sort_index() method works just like it did for Serieses:

print(simpsons.sort_index())

species age gender fave IQ hair salary
name
Bart human 10 M skateboard 90.0 buzz 0.0
Homer human 36 M beer 74.0 none 52000.0
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0
Marge human 34 F helping others 120.0 stacked tall 0.0
SLH dog 4 M NaN 30.0 shaggy 0.0

The result is rows sorted alphabetically by name. And I hate to
keep repeating myself, but remember that .sort_index() returns
a modified copy, unless you pass the inplace=True argument. The
ascending=False argument is also allowed, and will sort by the
index highest-to-lowest instead of lowest-to-highest.

To sort by one of the columns, we call .sort_values() and pass it
the column name:

print(simpsons.sort_values('IQ')

species age gender fave IQ hair salary
name
SLH dog 4 M NaN 30.0 shaggy 0.0
Homer human 36 M beer 74.0 none 52000.0
Bart human 10 M skateboard 90.0 buzz 0.0
Maggie human 1 F pacifier 100.0 curly 0.0
Marge human 34 F helping others 120.0 stacked tall 0.0
Lisa human 8 F saxophone 200.0 curly 0.0

Sometimes we want to include more than one column in the sort.
Why? As a tie-breaker. Consider sorting a roster for a student
club, which has first_name and last_name columns, among other
things. We might want to sort the list alphabetically by last name,
but for students with the same last name, we should go to the first
name as a tie-breaker (so that Angela Smith shows up after Velma
Patterson but before Brad Smith).

184 CHAPTER 17. TABLES IN PYTHON (2 OF 3)

To do this, we pass a list of columns, instead of a single column:

print(simpsons.sort_values(['gender','hair','IQ']))

species age gender fave IQ hair salary
name
Maggie human 1 F pacifier 100.0 curly 0.0
Lisa human 8 F saxophone 200.0 curly 0.0
Marge human 34 F helping others 120.0 stacked tall 0.0
Bart human 10 M skateboard 90.0 buzz 0.0
Homer human 36 M beer 74.0 none 52000.0
SLH dog 4 M NaN 30.0 shaggy 0.0

Here, we said “sort the rows alphabetically by gender. For rows
with the same gender, use hair as a tie-breaker. And for rows
with the same gender and the same hair, use IQ as a second tie-
breaker.” Glance at that output and convince yourself that it’s
correct.

We control the “ascendingness” of the multi-column sort by spec-
ifying a list of each ascending value, one for each column we’re
sorting by. Consider this:

print(simpsons.sort_values(['gender','hair','IQ'],
ascending=[False,True,False]))

species age gender fave IQ hair salary
name
Bart human 10 M skateboard 90.0 buzz 0.0
Homer human 36 M beer 74.0 none 52000.0
SLH dog 4 M NaN 30.0 shaggy 0.0
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0
Marge human 34 F helping others 120.0 stacked tall 0.0

Now we’re saying “sort reverse alphabetically by gender, breaking
ties by comparing hair alphabetically, and breaking further ties by
reverse sorted order by IQ.”

Oh, and the inplace=True argument works for all these examples
as well.

17.5. SUMMARY STATISTICS FOR DATAFRAMES 185

17.5 Summary statistics for DataFrames

Summary statistics like the mean, median, minimum/maximum,
and the like, can of course all be computed on individual columns
of a DataFrame, because each column is a Series:

print(simpsons['IQ'].median())

95.0

print(simpsons['salary'].sum())

52000.0

You can also, believe it or not, compute the sum/mean/max/etc
on the entire DataFrame. This computes it on every column indi-
vidually:

print(simpsons.mean())

age 15.500000
IQ 102.333333
salary 8666.666667
dtype: float64

Pandas left out the non-numeric columns (species, gender, etc.)
and computed the mean of each of the others, giving us a Series
containing their values.

186 CHAPTER 17. TABLES IN PYTHON (2 OF 3)

Finally, I often find the .describe() method useful:

print(simpsons.describe())

count 6.000000 6.000000 6.000000
mean 15.500000 102.333333 8666.666667
std 15.436969 56.645094 21228.911104
min 1.000000 30.000000 0.000000
25% 5.000000 78.000000 0.000000
50% 9.000000 95.000000 0.000000
75% 28.000000 115.000000 0.000000
max 36.000000 200.000000 52000.000000

Neat! We get the number of values, the mean, the standard devia-
tion, and all the quartiles for each of the numeric columns. Lots of
dashboard information at a glance!

Chapter 18

Tables in Python (3 of 3)

18.1 Queries

Back in section 13.1 (p. 124), we learned how to write simple
queries to selectively match only certain elements of a Series.
The same technique is available to us with DataFrames, only it’s
more powerful since there are more columns to work with at a time.

Let’s return to the Simpsons example from p. 174, which is repro-
duced here:

species age gender fave IQ hair salary
name
Homer human 36 M beer 74.0 none 52000.0
Marge human 34 F helping others 120.0 stacked tall 0.0
Bart human 10 M skateboard 90.0 buzz 0.0
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0
SLH dog 4 M NaN 100.0 shaggy 0.0

We can filter this on certain rows by including a query in boxies:

adults = simpsons[simpsons.age > 18]

species age gender fave IQ hair salary
name
Homer human 36 M beer 74.0 none 52000.0
Marge human 34 F helping others 120.0 stacked tall 0.0

187

188 CHAPTER 18. TABLES IN PYTHON (3 OF 3)

As with Serieses, we can’t forget to repeat the name of the variable
(“simpsons”) before giving the query criteria (“> 18”). Unlike with
Serieses, we also specify a column name (“.age”) that we want to
query.

We can also provide compound conditions in just the same way as
before (section 13.1, p. 128). If we want only human children, we
say:

kids = simpsons[(simpsons.age <= 18) & (simpsons.species == "human")]

species age gender fave IQ hair salary
name
Bart human 10 M skateboard 90.0 buzz 0.0
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0

whereas if we want everybody who’s smart and/or old, we say:

old_andor_wise = simpsons[(simpsons.IQ > 100) | (simpsons.age > 30)]

species age gender fave IQ hair salary
name
Homer human 36 M beer 74.0 none 52000.0
Marge human 34 F helping others 120.0 stacked tall 0.0
Lisa human 8 F saxophone 200.0 curly 0.0

To narrow it down to only specific columns, we can combine our
query with the syntax from section 17.1 (p. 177). You see, our
query gave us another (shorter) DataFrame as a result, which has
the same rights and privileges as any other DataFrame. So tacking
on another pair of boxies gives us just a column:

print(simpsons[simpsons.age > 18]['fave'])

18.2. THE .GROUPBY() METHOD 189

name
Homer beer
Marge helping others
Name: fave, dtype: object

while tacking on double boxies gives us columns:

print(simpsons[simpsons.age > 18][['fave','gender','IQ']])

fave gender IQ
name
Homer beer M 74.0
Marge helping others F 120.0

Note that in the first of these cases, we got a Series back, whereas
in the second (with the double boxies) we got a DataFrame with
multiple columns.

Combining all these operations takes practice, but lets you slice and
dice a DataFrame up in innumerable different ways.

18.2 The .groupby() method

One of the most useful methods in the whole DataFrame repertoire
is .groupby(). It applies when you want summary statistics (mean,
quantile, max/min, etc.) not for the whole data set, but for each
subset of the data set, where the subsets split on the values of one
of the variables.

Here’s an example in action. It’s old news that we could find, say,
the median IQ of the Simpsons family overall:

print(simpsons['IQ'].median())

95.0

190 CHAPTER 18. TABLES IN PYTHON (3 OF 3)

But it’s new news that we can do this for each gender separately,
via:

print(simpsons.groupby('gender')['IQ'].median())

gender
F 120.0
M 74.0
Name: IQ, dtype: float64

We give a categorical variable as the argument to .groupby(), and
specify a numeric variable as the column we wish to analyze. Fi-
nally, we choose the summary statistic we want (.median() in the
above case).

All this produces a resulting Series. Think hard: the keys of the
resulting Series are the values of the categorical variable (in the
original Series) that we grouped by; and the values of the resulting
Series, are the results of applying the summary statistic function
to each of the subsets separately.

So now, in addition to knowing that the overall Simpson family
median IQ is 95, we also know that among Simpson boys and men,
it’s only 74, whereas among girls and women, it’s an impressive 120.

Another example: let’s find the maximum age for each hair style:

print(simpsons.groupby('hair')['age'].max())

hair
buzz 10
curly 8
none 36
shaggy 4
stacked tall 34
Name: age, dtype: int64

(Since there’s so many different hairstyles present, Maggie turns
out to be the only one whose age is not represented here.)

18.3. LOOPING WITH DATAFRAMES 191

18.3 Looping with DataFrames

Just as we wrote for loops to iterate through the elements of a
NumPy array (section 14.3) and a Pandas Series (section 14.4), so
we can iterate through the rows of a DataFrame. We’ll do so using
the weirdly-named .itertuples() method.

By using .itertuples() in the loop header, we have available to us
in the loop body a Series representing the current row. (“Current
row” just means “the row we’re on as we successively go through all
the rows in sequence.”) We can access individual elements of it by
using column names and the dot (or boxie) syntax, as follows:

for row in simpsons.itertuples():
print("A certain {}-year old has {} hair.".format(row.age,

row.hair))

A certain 36-year old has none hair.
A certain 34-year old has stacked tall hair.
A certain 10-year old has buzz hair.
A certain 8-year old has curly hair.
A certain 1-year old has curly hair.
A certain 4-year old has shaggy hair.

I called the loop variable “row” because it represents a row of the
DataFrame (duh), although you can call it anything you want to.
(I could have named it “family_member” or “Simpson” instead.)

This is very intuitive. Slightly less intuitive is that if we want the
index column (in simpsons, it’s called “name,” remember) we can’t
use the name of the index column. Instead, we have to literally say
“.Index,” and yes that’s a capital ‘I’.

To illustrate:

for family_member in simpsons.itertuples():
print("{} Simpson, {} years of age, has {} hair.".format(

family_member.Index, family_member.age, family_member.hair))

192 CHAPTER 18. TABLES IN PYTHON (3 OF 3)

Homer Simpson, 36 years of age, has none hair.
Marge Simpson, 34 years of age, has stacked tall hair.
Bart Simpson, 10 years of age, has buzz hair.
Lisa Simpson, 8 years of age, has curly hair.
Maggie Simpson, 1 years of age, has curly hair.
SLH Simpson, 4 years of age, has shaggy hair.

Chapter 19

Exploratory Data Analysis:
bivariate (1 of 2)

In this chapter, we’ll extend our EDA repertoire to cover bivari-
ate data, which means studying the relationships between pairs of
variables, rather than focusing only on one variable at a time. This
is where most of the action is: you’ll be awed and impressed by how
much more we can dig out of a data set in this chapter.

Bivariate data analysis is especially suited to the tables (in Python,
DataFrames) from section 7.1 and chapters 16–18. This is because
each column of a table is a variable that matches one-for-one with
every other column in the table.

In the Simpsons example (p. 174), the fourth species value corre-
sponds to Lisa, as does the fourth age value, the fourth fave value,
the fourth gender value, the fourth fave value, the fourth IQ value,
the fourth hair value, and the fourth salary value. This means
that if we examine any two columns, we know that matching indices
go together (i.e., represent the same person). This implicit connec-
tion is what allows us to meaningfully examine a pair of variables.

193

194 CHAPTER 19. EDA: BIVARIATE (1 OF 2)

19.1 The concept of statistical significance

Before we get to the details, we need to face head-on what is prob-
ably the single most important concept in statistics, that of sta-
tistical significance (or “stat sig,” for short). It is so immensely
important that I’m going to ask you to put down whatever snack
you’re eating right now, fold your hands, and pay very close atten-
tion.

All forms of bivariate analysis are variations on a single theme,
namely: discovering whether or not an association exists between
two variables. Recall from section 10.2 (p. 91) that an association
means that two variables are correlated in some way: that certain
values of one tend to go more often with certain values of the other.
To make it concrete, let’s say one of our variables is sex (at birth,
male or female) and the other is height (in inches, say). We want to
know: “are taller people more often male, and shorter people more
often female, or is there no connection between sex and height?”

Now the first thing you think of doing, of course, is getting a sample
(recruiting volunteers, say) of both males and females, measuring
their heights, and taking the average (mean). Let’s say you do that,
and you come up with the following numbers:

Females – average height: 65.5 inches
Males – average height: 69.3 inches

Clearly, in your sample, males were on average somewhat taller –
3.8 inches taller, in fact. A careless thinker would immediately con-
clude: “aha! My hypothesis is confirmed. I scientifically carried out
my study, and mathematically computed the results, and now here
is some hard data proving the conclusion that generally speaking,
men tend to be taller than women.”

Are you convinced by that reasoning?

I hope you’re not. Here’s why. Let’s change the example, and
suppose that instead of height, we measured our volunteers’ IQ.
Taking the averages as before, we come up with these numbers:

19.1. THE CONCEPT OF STATISTICAL SIGNIFICANCE 195

Females – average IQ: 102.4
Males – average IQ: 98.6

In this case, the average of the females in the sample was higher
than the males was. Shall we conclude that in general, women tend
to be smarter than men?

Confirmation bias

If you’re like most people, you’ll accept that first finding as con-
firmation of men’s tallness, and you’ll reject the second finding as
just a fluke of the sample. Undoubtedly, this is because you went
into the question already having an opinion about the matter. You
just know in your heart that men do tend to be taller than women
(you’ve observed thousands of both sexes, in fact, and have in fact
noticed that trend) whereas you know in your heart that neither sex
has an advantage in intelligence (ditto). This leads you to reason
as follows:

1. “Well of course my male volunteers were taller than the female
ones. I’ve known all along that males tend to be taller in
general, and this just confirms it!”

2. “Aw, c’mon, we only sampled a few people and measured their
IQs. Sure, these particular women might have been a bit
smarter than these particular men, but if I ran the experiment
again on different volunteers, it might just as easily go the
other way. It’d be silly to draw a grand conclusion from that.”

Psychologists call this fallacy of reasoning “confirmation bias.”
We have a natural tendency to interpret information in a way that
affirms our prior beliefs. Data that seems to contradict it, we simply
talk our way out of.

Confirmation bias is one of the most insidious enemies of humankind.
It leads to wrong reasoning, the entrenchment of beliefs, danger-
ous overconfidence, polarization, and in the worst cases, group-
think. When a group of people succumbs to groupthink, “ortho-
dox” viewpoints are encouraged, while alternative viewpoints are
dismissed and suppressed. Every piece of evidence that conforms

196 CHAPTER 19. EDA: BIVARIATE (1 OF 2)

to the group’s consensus belief is hailed as evidence confirming it,
and evidence that contradicts it is chalked up to mere statistical
anomaly.

One of many examples of this phenomenon was the CIA circa 2002:
from the top to the bottom, nearly every member of the organi-
zation was certain that Sadaam Hussein’s terrible regime in Iraq
possessed weapons of mass destruction (WMDs). Later, when it
was inexplicably discovered that this “fact” wasn’t true after all (af-
ter we had made irreversible decisions based on it), analysts pored
over the CIA’s decision-making process to try and make sense of it.
Confirmation bias was perhaps the key ingredient.

Be aware of it in your own thinking, and at all costs steer yourself
away from it!

The perils of eyeballing it

Okay. Let’s suppose that we’ve freed ourselves from confirmation
bias, and we’re actually looking at the numbers objectively. The
first question still remains: does an association exist between the
two variables?

Men were an average of 3.8 inches taller in our sample. That’s a
difference...but is it enough of a difference? Women were smarter
by 3.8 IQ points. That’s a difference...but is it enough?

To clarify, when we say “enough,” what we mean is: “enough of
a difference to generalize our findings to the population at large.”
Here’s a paradox: what we have is a sample; yet oddly, it’s never
the sample we actually care about. We care about what the sample
tells us about the population.

Think about it. Nobody cares whether the 14 females we surveyed
are smarter on average than the 17 males we surveyed. But if
we make the claim: “in general women are smarter than men,”
suddenly everybody cares. To use another example, nobody cares
that 58% of the 2,000 people in our phone sample said they intend
to vote for Elizabeth Warren, and only 39% said Donald Trump.
But if we say “across the country, we predict more Warren votes
than Trump votes by such-and-such margin,” this is big news.

19.1. THE CONCEPT OF STATISTICAL SIGNIFICANCE 197

Now the first law to beat into your head is that you absolutely
cannot reliably eyeball it. This is what everyone who hasn’t taken
a Data Science or Statistics class tries to do. They squint at the
difference (3.8 IQ points, e.g.) and bite their lip and mutter, “well,
that sure seems (or doesn’t seem) like a pretty big difference. I’ll
bet this says (or doesn’t say) something about intelligence among
the sexes in general.”

Stop. You cannot. People are demonstrably very bad at judging
whether or not a difference between groups is “enough.” Part of the
problem is that the answer to the question turns on three separate
things: how big the difference is, how large your sample size is,
and – importantly – how variable the data is (meaning, how widely
the points you sample differ from each other). All three of these
factors need to be mixed into a soup in just the right way in order
to properly judge, and human intuition is just flat terrible at doing
that.

So eyeballing is a non-starter. But happily, it turns out that statis-
tics provides us an iron-clad, dependable, quantitative, take-it-to-
the-bank method for determining whether the pattern in a data set
is “enough” to justifiably claim an association between variables.
And that is the concept of statistical significance.

A “statistically significant difference”

The correct way to determine whether a difference is “enough” is to
use the appropriate statistical test. A statistical test is a standard
procedure for incorporating all three factors I previously mentioned
(the degree of difference, the sample size, and the amount of vari-
ance among data points) to come up with a principled, defensible
answer to this question: is the pattern I see in my sample a statis-
tically significant one? Can we be reasonably confident that it will
also be true of the population as a whole?

All the statistical tests we’ll learn (in the next chapter) have a
common output: a p-value. That’s nice because you don’t have to
memorize a lot of different rules for interpreting a lot of different
tests.

198 CHAPTER 19. EDA: BIVARIATE (1 OF 2)

So what the heck is a “p-value?” There have been controversies
galore1, and even entire books2 devoted to the subject, which means
that whatever I choose to write here can be nitpicked by statisticians
a dozen different ways.

That’s okay. I’m going to write it anyway, and this will serve you
very well. Here goes:

A p-value is a number between 0 and 1. If you run a statistical test
on your bivariate data, and the p-value is less than your α (“al-
pha”) value (normally, .05), then there is a statistically significant
association between the variables. Otherwise, there isn’t. End of
story.

Recall from section 10.5 (p. 102) that α is “where to set the bar”
to detect a meaningful association. It’s essentially how often we’re
willing to draw a false conclusion. For social science data (that
is, data involving humans), you should always choose .05 to avoid
controversy. For physical science data, you should always choose
.01.

The bottom line is this: if you spot a possible relationship between
two of your variables (like gender and IQ), run the appropriate
statistical test (see next chapter) and look at the p-value. If it’s
less than α, then the difference you thought you saw officially is
“enough.” You can therefore declare “yep, these two variables are
associated, to a confidence level of α.” If it’s not less than α, then
even though you thought you saw a meaningful tendency in the
data, you can officially say, “nope, it’s not a stat sig diff. This is

1For instance:
• Colquhoun D (2017). “p-values.” Royal Society Open Science. 4(12):

171085.
• Murtaugh, Paul A. (2014). “In defense of p-values.” Ecology. 95(3):

611–617
• Wasserstein, Ronald L.; Lazar, Nicole A. (2016). “The ASA’s Statement

on p-Values: Context, Process, and Purpose.” The American Statisti-
cian. 70(2): 129-133

2Vickers, A. J. (2009). What is a p-value anyway? Boston: Pearson.

19.2. MOVING ON 199

very likely just an artifact of the particular data points I collected
in my sample. Pay of no mind.”

19.2 Moving on

Which statistical test is appropriate depends on your two variables’
scales of measure: in particular, whether they are categorical or
numeric. There are three scenarios for bivariate analysis: two cate-
gorical variables, two numeric variables, or one of each. In the next
chapter, in addition to learning how to meaningfully plot all three
cases, we’ll learn how to run and interpret the statistical test appli-
cable to each case, in order to determine once and for all whether
“enough” is enough.

Chapter 20

Exploratory Data Analysis:
bivariate (2 of 2)

20.1 Three bivariate scenarios

As we saw with univariate data in chapter 15, different kinds of plots
and statistics are appropriate depending on the variable’s scale of
measure – categorical or numeric. There are thus three different
cases for bivariate analysis:

• Two categorical variables
• One categorical variable and one numeric variable
• Two numeric variables

We’ll consider each case in turn. Throughout all the remaining
sections, we’ll use this fictitious data set, called people:

gender salary color followers
0 male 54.94 purple 26
1 female 72.48 purple 22
2 male 9.47 blue 27
3 other 60.08 red 22
4 male 37.62 red 13

.

.

Each row represents one fictional person we interviewed, and in-

201

202 CHAPTER 20. EDA: BIVARIATE (2 OF 2)

cludes their gender, their salary (in thousands of dollars per year),
their favorite color, and the number of followers they have on
some unspecified social media website.

The DataFrame has 5000 rows, and no special “index” variable: none
of the columns that we collected are unique, so we just let Pandas
default to indexing the rows by number, 0 through 4,999.

20.2 Importing scipy.stats

All of the statistical tests we’ll demonstrate in this chapter come
from the SciPy Python package (pronounced “sigh pie.”) SciPy is
huge, and has several different parts; for the time being, we’ll only
be using the “stats” component. Therefore, we need one additional
import statement:

import scipy.stats

You can include this in a cell at the top of your Jupyter Notebook
just like your numpy and pandas imports.

20.3 Two categorical variables

Okay. Let’s return our attention to the people DataFrame, and be-
gin with a bivariate analysis of the gender and color columns. The
first thing we should do, of course, is inspect each one individually,
using .value_counts() and perhaps a bar chart from sections 15.1
and 15.4. Let’s say we’ve done that.

The next obvious question: is there an association between the two
variables? In other words, are there particular values of one that
tend to go with particular values of the other? In still other words,
do people of different genders tend to have different favorite colors?

20.3. TWO CATEGORICAL VARIABLES 203

Contingency tables

The first tool to get at this question is called a contingency table.
This is very much like .value_counts(), but for two variables in-
stead of one. Our function is crosstab() from the Pandas package:
if we give it two columns as arguments, it computes the complete
set of counts from all possible combinations of variables. Here’s
what it looks like:

pd.crosstab(people.gender, people.color)

color blue green pink purple red yellow
gender
female 240 402 665 644 289 378
male 1403 0 0 248 463 258
other 1 2 2 2 1 2

Interpreting this is straightforward. Every cell in the matrix tells us
how many people had a particular gender and a particular favorite
color. For instance, there were 378 females who named yellow as
their favorite color, and no males at all chose green.

Plotting two categorical variables

So now we have a table of counts – how to turn this into a pretty
and informative plot?

Unfortunately, there doesn’t seem to be any great way to do this.
There’s something called a “mosaic plot” which attempts it, but
they’re not very easy to visually interpret. Another option is a “heat
map,” which essentially reproduces the above table as squares in a
grid, with each square color coded on a continuum by its height (for
instance, low numbers might be dark blue and high numbers bright
yellow, with a rainbow spectrum of number in between). That’s
sort of okay, but to be honest I prefer to just look at the numbers.

204 CHAPTER 20. EDA: BIVARIATE (2 OF 2)

The χ2 test

The statistical test to use for two categorical variables is called the
χ2 test (pronounced “kai-squared,” not “chai-squared,” by the way).
To run it, it’s convenient to first store the contingency table itself as
a variable. I’ll call it gender_color since it’s a table of the genders
of people and their favorite colors:

gender_color = pd.crosstab(people.gender, people.color)

Now, we run the test by calling the chi2_contingency() function
from SciPy:

scipy.stats.chi2_contingency(gender_color)

(2125.8933435, 0.0, 10, array([[8.60798e+02, 2.11534e+02,
3.49241e+02, 4.68098e+02, 3.94270e+02, 3.34056e+02],

[7.79913e+02, 1.91657e+02, 3.16424e+02, 4.24113e+02,
3.57223e+02, 3.02667e+02],

[3.28800e+00, 8.08000e-01, 1.33400e+00, 1.78800e+00,
1.50600e+00, 1.27600e+00]]))

I know, I know: that output is downright hideous. Here’s the deal,
though: all you have to do is look at the second number in that
long, banana-and-boxie-laden thing. The second number is the
p-value. It is 0.0. This is obviously lower than .05 (our α), and
therefore, we can conclude that gender and color are associated.

All the other stuff in that output are fine-grained details that statis-
ticians like to pore over. For us, the only thing we need to see from
a χ2 (or any other) test is the p-value.

20.4. ONE CATEGORICAL, ONE NUMERIC VARIABLE 205

20.4 One categorical and one numeric
variable

Next let’s consider the case where we want to test for an associ-
ation between one categorical and one numeric variable. This is
the “gender vs. IQ” scenario from the last chapter. In the people
example, we might look at gender vs. salary to whether different
genders earn different amounts of money on average.

Grouped box plots

The best plot for this scenario (IMHO) is the grouped box plot.
It’s the same as the chapter 15 box plots, except that we draw a
different box (and pair of “whiskers”) for each group.

Here’s the command in Pandas:

people.boxplot('salary',by='gender')

This produces the plot on the left-hand side of Figure 20.1. Refer
back to section 15.6 (p. 165) for instructions on how to interpret
each part of the box and whiskers. From the plot, it doesn’t look like
there’s much difference between the males and females, although
those identifying with neither gender look perhaps to be somewhat
of a salary disadvantage.

Figure 20.1: Grouped box plots of salary (left) and number of social media
followers (right), grouped by gender.

Similarly, we get the plot on the right-hand side with this code:

206 CHAPTER 20. EDA: BIVARIATE (2 OF 2)

people.boxplot('salary',by='followers')

This looks more skewed (females appear to perhaps have more
followers on average than males), but of course we won’t know for
sure until we run the right statistical test.

The t-test

The test we’ll use for significance here is called the t-test (some-
times “Student’s t-test”) and is used to determine whether themeans
of two groups are significantly different.1 Remember, we can get
the mean salary for each of the groups by using the .groupby()
method:

people.groupby('gender')['salary'].mean()

gender
female 52.031283
male 51.659983
other 48.757000

Females have the edge over males, 52.03 to 51.66. Our question
is: is this “enough” of a difference to justify generalizing to the
population?

To run the t-test, we first need a Series with just the male salaries,
and a different Series with just the female salaries. These two
Serieses are not usually the same size. Let’s use a query to get
those:

1Strictly speaking, the t-test assumes that the data sets you’re compar-
ing are “bell curvy” (or “normally distributed,” to be precise) and we haven’t
checked for that here. However, since we’re doing exploratory data analysis
(not drawing up and documenting final conclusions) it’s common to use a t-test
as a quick-and-dirty just to see what’s worth investigating.

20.4. ONE CATEGORICAL, ONE NUMERIC VARIABLE 207

female_salaries = people[people.gender=="female"]['salary']
male_salaries = people[people.gender=="male"]['salary']

and then we can feed those as arguments to the ttest_ind() func-
tion:

scipy.stats.ttest_ind(female_salaries, male_salaries)

Ttest_indResult(statistic=0.52411385896, pvalue=0.60022263724)

This output is a bit more readable than the χ2 was. The second
number in that output is labeled “pvalue”, which is over .05, and
therefore we conclude that there is no evidence that average salary
differs between males and females.

Just to complete the thought, let’s run this on the followers vari-
able instead:

female_followers = people[people.gender=="female"]['followers']
male_followers = people[people.gender=="male"]['followers']
scipy.stats.ttest_ind(female_salaries, male_salaries)

Ttest_indResult(statistic=9.8614730266, pvalue=9.8573024317e-23)

Warning! When you first look at that p-value, you may be tempted
to say “9.857 is waaay greater than .05, so I guess this is a ‘no
evidence’ result as well.” Not so fast! If you look at the entire
number – including the ending – you see:

9.857302431746571e-23

that sneaky little “e-23” at the end is the kicker. This is how
Python displays numbers in scientific notation The “e” means
“times-ten-to-the.” In mathematics, we’d write that number as:

9.857302431746571 × 10−23

which is:

208 CHAPTER 20. EDA: BIVARIATE (2 OF 2)

.000000000000000000000009857302431746571

Wow! That’s clearly waaay less than .05, and so we can say the
average number of followers does depend significantly on the gender.

Be careful with this. It’s an easy mistake to make, and can lead to
embarrassingly wrong slides in presentations. ,

More than two groups: ANOVA

By the way, the t-test is only appropriate when your categorical
variable has two values (male vs. female, for example, or vaccinated
vs. non-vaccinated). If there are more than two, the appropriate test
to run is called an “ANOVA” (ANalysis Of VAriance). It’s beyond
the scope of this text, but it’s described in any intro stats textbook
and is eminently Googleable.

20.5 Two numeric variables

Finally, we have the case where both variables are numeric. The
salary and followers columns are this case. Are they associated?

Scatter plots

The correct plot to visualize this is the scatter plot. It has an axis
for each numeric variable, and plots one dot (or other marker) for
each object of study: its x/y coordinates depend on that object’s
value for each variable.

The Pandas code is as follows:

people.plot.scatter(x='followers',y='salary')

which produces Figure 20.2. Interestingly, there appear to be a lot
of people pegged at zero salary, and also at 10-ish followers. (These
observations would have shown up in a univariate analysis as well.)
There’s no super obvious connection between the two variables, but

20.6. PEARSON CORRELATION COEFFICIENT 209

if you squint at the plot it (maybe) looks like there’s a slight up-and-
to-the-right trend, which would indicate that having more followers
is modestly associated with earning more money.

Figure 20.2: A scatter plot of followers vs. salary. Each point in the
plot represents one person, with the x and y coordinates corresponding to
his/her/their number of followers and salary.

20.6 Pearson correlation coefficient

The test we’ll use to see whether this pattern is significant is the
Pearson correlation coefficient (also called “Pearson’s r”). To
run it, we call SciPy’s pearsonr() function and pass it the two
columns:

scipy.stats.pearsonr(people.salary, people.followers)

(0.2007815176819964, 1.2285885030618397e-46)

We’re given two numbers as output. The second of these is the p-
value, and remembering our pitfall from above, we’re savvy enough
to notice the e-46 at the end and declare it significant. So we can

210 CHAPTER 20. EDA: BIVARIATE (2 OF 2)

say we have high confidence that a person’s salary is associated with
their number of social media followers.

Now for the first number, which is the actual “correlation coeffi-
cient.” If the second number is below α and therefore significant (as
it was here), you then look at the first number and see whether it’s
positive or negative. Positive numbers indicate positive correla-
tions: an increase in one of the variables corresponds to an increase
in the other. Negative numbers indicate negative correlations:
an increase in one of the variables corresponds to a decrease in the
other. Here, we have a positive number, which means that having
more followers tends to go with a higher salary.

As an example of the second (negative) case, suppose two of our
variables in a data set of sailboat races were length (the length of
the sailboat, from bow to stern) and finish_time (the number of
minutes the boat took to complete the race). We’re likely to see a
negative correlation in this case, because physics tells us that longer
boats can travel through the water faster (and therefore have lower
finish times). These two variables would thus be correlated, but in
a negative way: a high value for one would typically indicate a low
value for the other.

Chapter 21

Branching

In this chapter, we’ll learn our next programming trick: how to
execute code conditionally. This is called branching. It’s another
variant of non-linear programming, like the loops from chapter 14:
it enables something other than the strict, start-to-finish, line-by-
line execution of a program. In particular, branching allow us to
designate certain lines of code to be executed “only sometimes.”

21.1 The if statement

The main branching statement in Python and most languages is
the if statement. Here’s a couple of them in action:

1: name = "Horace"
2: cash_on_hand = 100000
3: IQ = 90
4: print("Nice to meet you, {}!".format(name))
5: if cash_on_hand > 5000:
6: print("Wow, you're rich! Gimme a fiver.")
7: cash_on_hand = cash_on_hand - 5
8: if IQ > 100:
9: print("Wow, you're smart! Read a book.")

10: IQ = IQ + 5
11: print("{}'s IQ is {} and he has ${}.".format(name,
12: IQ, cash_on_hand))

211

212 CHAPTER 21. BRANCHING

Even without any explanation, you might be able to figure out that
the output of the code snippet above is:

Nice to meet you, Horace!
Wow, you're rich! Gimme a fiver.
Horace's IQ is 90 and he has $99995.

If not, stay tuned.

Just like a for loop, every if statement has a header and a body.
And just like a for loop, the determining factor of which lines
constitute the body depends on the indentation:

R The first if statement’s header is line 5.
R The first if statement’s body is lines 6 and 7.
R The second if statement’s header is line 8.
R The second if statement’s body is lines 9 and 10.

When an if statement is reached, its condition is evaluated; in
the first case, the condition “cash_on_hand > 500” is evaluated to
True, and in the second case, “IQ > 100” is determined to be False.
Then, only if the condition is true will the body of the if statement
execute. Otherwise, it’ll be skipped over.

Thus, the lines of the above program execute in this order: 1, 2,
3, 4, 5, 6, 7, 8, 11/12. Lines 9 and 10 are skipped entirely, since
Horace’s IQ wasn’t above average. Observe that the cash_on_hand
variable was updated inside the body of the first if statement, but
that IQ was not.

Compound conditions

Conditions can be more complicated than the ones above; just as
with queries (p. 128) they can contain more than one component:

if cash_on_hand > 10000 and IQ < 50:
print("Wow, some dumb people are sure rich!")

21.2. THE IF/ELSE STATEMENT 213

You might have been surprised to see the word “and” in that if
statement instead of the character “&”. I feel you. It’s totally in-
consistent, but nevertheless true: although in a query, you must use
the symbols &, |, and ~, in an if condition, you must use the words
and, or, and not. (In other news, the bananas around the compo-
nents of an if condition aren’t necessary, but you can include them
if you want.)

For your convenience, the if condition operators are listed in Fig-
ure 21.1. (Remember the double-equals!!)

21.2 The if/else statement

The above examples execute the if body as long as the condition
is true, and do nothing otherwise. It’s common to want to do
something else in the “otherwise” case instead, and for that, we
have the if/else statement.

name = "Gladys"
cash_on_hand = 2000
IQ = 120
print("Nice to meet you, {}!".format(name))
if cash_on_hand > 5000:

print("Wow, you're rich! Gimme a fiver.")
cash_on_hand = cash_on_hand - 5

else:
print("I wish you well!")

if IQ > 100:
print("Wow, you're smart! Read a book.")
IQ = IQ + 5

else:
print("You're currently not that smart. Read a book!")
IQ = IQ + 10

print("{}'s IQ is {} and she has ${}.".format(name, IQ,
cash_on_hand))

Nice to meet you, Gladys!
I wish you well!
Wow, you're smart! Read a book.
Gladys's IQ is 125 and she has $2000.

214 CHAPTER 21. BRANCHING

You can see that “I wish you well!” was printed. This is because
cash_on_hand was not greater than 5000 (as required by the if
condition). Also, the “. . . you’re smart!. . . ” message was printed
but not the “. . . not that smart. . . ” one. Both the if part and
the else part have an indented body, although only the if part
has a condition.

And that brings up another point. Although it hardly seems worth
mentioning, let me nevertheless emphasize this oft-overlooked truth:

Whenever an if/else statement is reached, either the if body
or the else body will always be executed. It’s never both,
and it’s never neither one.

This is always, always true, because of the nature of things. The
reason the else header doesn’t have a condition is because its con-
dition is implicitly the exact opposite of the if condition. Period.
In any case where the if condition isn’t true – and only in such a
case – will the else condition be executed.

To test whether you fully understand this point, see if you can
predict the output of the following program, which 99% of beginning
programmers get wrong:

name = "Javier"
lang = "French"

if lang == "Spanish":
print("Hola, {}!".format(name))

if lang == "French":
print("Bonjour, {}!".format(name))

if lang == "Chinese":
print("Ni hao, {}!".format(name))

else:
print("Hello, {}!".format(name))

Seriously, don’t feel bad if you miss this one. The answer (*drum
roll please*) is:

21.3. THE IF/ELIF/ELSE STATEMENT 215

Bonjour, Javier!
Hello, Javier!

Wait...wut? Why did it print two messages? Surely if Javier’s
preferred language is French, it ought to say “Bonjour” and skip
all the other options?

To understand this behavior, you have to realize that an if/else
statement is a single entity. This multi-lingual greeting program
has three components:

1. an if statement
2. an if statement
3. an if/else statement

And you must remember our golden rule in the shaded box: either
the if body or the else body will always be executed:
never both, and never neither one. Therefore, the above pro-
gram does this:

1. If the language is Spanish, print an “Hola” message. (Other-
wise, do nothing.)

2. If the language is French, print a “Bonjour” message. (Other-
wise, do nothing.)

3. If the language is Chinese print a “Ni hao” message. Other-
wise, print a “Hello” message.

Once you recognize that structure, you’ll realize that when step 3
is encountered, the program must print either “Ni hao” or “Hello.”
It can’t print both, and it can’t print neither. An if/else just
doesn’t work any other way.

21.3 The if/elif/else statement

The problem with the previous example is that we really want
our four languages to be mutually exclusive options. If lang
is "Spanish", we want it to print “Hola” and skip all the rest. The
easiest way to get this behavior is to use “elif” (a horrid abbrevi-
ation of the phrase “else if”).

216 CHAPTER 21. BRANCHING

Operator Meaning

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

== equal to

and and

or or

not not

Figure 21.1: Operators in if statements: simple and compound.

Squint hard at this program until you see the differences between
it and the previous one:

name = "Javier"
lang = "French"

if lang == "Spanish":
print("Hola, {}!".format(name))

elif lang == "French":
print("Bonjour, {}!".format(name))

elif lang == "Chinese":
print("Ni hao, {}!".format(name))

else:
print("Hello, {}!".format(name))

It’s identical except that we replaced the second two if’s with
elif’s. This tells Python: only if the language is not Spanish
should you then consider whether or not it’s French. And only if
it’s not French (and not Spanish) should you consider whether or

21.4. NESTING 217

not it’s Chinese. And only if it’s not Chinese (and not French (and
not Spanish)) should you print “Hello.”

Realize, too, that an entire if/elif/elif/.../elif/else chain is a
single statement, no matter how many conditions it has. You can’t
just have an “elif” (or an “else,” for that matter) floating out in
the void without an initial if to anchor it. This may help you to
understand how the elif structure acts, and why it will only ever
execute one of the bodies. It’s because:

Whenever an if/elif/.../elif/else statement is reached, exactly
one of the bodies will be executed. It’s never more than
one, and it’s never none.

Whether to use sequential ifs or a chain of elifs isn’t always an
easy question to answer. Neither choice is always right: you have to
think rigorously logically about how the program should act. Ask
yourself: “do I want Python to consider all of these conditions –
and execute the appropriate if bodies – no matter what? Or do I
want it to bail out as soon as it finds one that’s true?” Like most
things, it takes practice to get right.

21.4 Nesting

Now as if this weren’t complex enough, let me inform you that
the body of an if (or else, or elif) statement can itself contain
other if statements! This is actually quite common. Consider this
example:

218 CHAPTER 21. BRANCHING

first_name = "Emma"
last_name = "Watson"
gender = "female"
marital_status = "single"
degree = "BA"

if degree == "PhD" or degree == "MD":
print("Why hello, Dr. {}!".format(last_name))

elif gender == "male":
print("Why hello, Mr. {}!".format(last_name))

elif gender == "female":
if marital_status == "married":

print("Why hello, Mrs. {}!".format(last_name))
elif marital_status == "single":

print("Why hello, Miss {}!".format(last_name))
else:

print("Why hello, Ms. {}!".format(last_name))
else:

print("Why hello, Mx. {}!".format(last_name))

Why hello, Miss Watson!

This program implements the quite convoluted social norms for
salutations in Western culture. Consider it carefully. If a person is
either a Ph.D. or a Medical Doctor, that trumps everything, and
we use “Dr.” as their form of address. This is to indicate just how
studly these people are.

If they don’t have such a college degree – and only if they don’t
(notice the elif) – will we then consider their gender. For men,
it’s simple: a plain old “Mr.” will do. For women, it’s compli-
cated: their marital status now comes into play. This is the nested
part of the structure: we have another if statement (a whole
if/elif/else chain, actually) inside the “gender == "female"”
condition. If the person in question identifies as neither male nor
female, all that Mrs./Miss/Ms. stuff will be skipped, and we’ll
drop straight to the Mx. message.

21.5. COMBINING BRANCHING WITH LOOPS 219

Pay careful attention to the indentation in these examples, since
it’s the key to discerning the structure of the program.

21.5 Combining branching with loops

And now for the really important application of branching in data
science programs: combining it with loops.

Just as we can have an if statement (or if/else, or if/elif/else)
inside an if body, so we can have an if statement (and friends)
inside a loop body. This is where we’re going to get a lot of mileage.

Let’s return to Springfield. Our simpsons DataFrame from p. 174
looked like this:

species age gender fave IQ hair salary
name
Homer human 36 M beer 74.0 none 52000.0
Marge human 34 F helping others 120.0 stacked tall 0.0
Bart human 10 M skateboard 90.0 buzz 0.0
Lisa human 8 F saxophone 200.0 curly 0.0
Maggie human 1 F pacifier 100.0 curly 0.0
SLH dog 4 M NaN 100.0 shaggy 0.0

Now an ordinary loop could print (say) the name and favorite things
of all the characters:

for row in simpsons.itertuples():
print("{} likes {}.".format(row.Index, row.fave))

Homer likes beer.
Marge likes helping others.
Bart likes skateboard.
Lisa likes saxophone.
Maggie likes pacifier.
SLH likes nan.

But combining this with branching techniques gives us more power.
We could, for example, print only the females:

220 CHAPTER 21. BRANCHING

for row in simpsons.itertuples():
if row.gender == "F":

print("{} likes {}.".format(row.Index, row.fave))

Marge likes helping others.
Lisa likes saxophone.
Maggie likes pacifier.

or give different messages for different age ranges:

for row in simpsons.itertuples():
if row.age >= 18:

print("{} earns ${} outside the home.".format(row.Index,
row.salary))

else:
print("Aw, {}'s just a kid.".format(row.Index))

Homer earns $52000.0 outside the home.
Marge earns $0.0 outside the home.
Aw, Bart's just a kid.
Aw, Lisa's just a kid.
Aw, Maggie's just a kid.
Aw, SLH's just a kid.

or combine these things in innumerable ways:

for row in simpsons.itertuples():
if row.species == "human":

if row.IQ > 115:
print("We'd like to nominate {} for a Nobel prize.".format(

row.Index))
elif row.IQ >= 90:

print("You can trust {} with a {}, or even a knife.".format(
row.Index, row.fave))

else:
print("Hmm. No comment.")

if row.salary > 0:
print("The {}-year-old {} is gainfully employed.".format(

row.age, row.Index))
else:

print("Hey...{} is some kind of animal!".format(row.Index))

21.5. COMBINING BRANCHING WITH LOOPS 221

Hmm. No comment.
The 36-year-old Homer is gainfully employed.
We'd like to nominate Marge for a Nobel prize.
You can trust Bart with a skateboard, or even a knife.
We'd like to nominate Lisa for a Nobel prize.
You can trust Maggie with a pacifier, or even a knife.
Hey...SLH is some kind of animal!

You get the idea. Using a loop, we can successively consider each
element of an array/Series or the rows of a DataFrame. Using
if and friends, we can treat each one differently depending on its
characteristics. The possibilities are endless!

Chapter 22

Functions (1 of 2)

And now for the very last “pure programming” lesson of the book:
writing functions. This is more or less the final tool in the pro-
grammer’s toolkit, and as I’ve learned over my years of teaching, it
often causes the most trouble.

Now you might be thinking, “hey waitaminit, we’ve known about
functions since all the way back on p. 20. This is something new?”
Yes it is. Previously in this book, we’ve done a lot of calling func-
tions – from simple ones like len() and np.append() to complex
ones like pd.read_csv() to scipy.stats.chi2_contingency() –
that someone else has written for us. By contrast, in this chapter,
we look behind the curtain and join the production staff: we write
our own functions.

22.1 Why do all this

It turns out there’s a lot of syntactic nonsense involved to get all
the wiring right when you do this. It can cause students to pull
their hair out. So it’s worth asking at the outset: what do we get
for all this pain?

The answer is subtle, and can seem underwhelming at first, but
it’s crucial. It essentially boils down to this lesson: any complex
creative work (including a computer program) should be modular
in its design. This means that it should be composed of smaller

223

224 CHAPTER 22. FUNCTIONS (1 OF 2)

building blocks, which are in turn composed of still smaller building
blocks. The entire thing should comprise an organized whole.

Any other way of doing it leads to madness.

Think of a car engine. When a mechanic opens up the hood, he
or she doesn’t see just one big monolithic thing called “The En-
gine,” but rather piston assemblies, spark plugs, water pumps, drive
shafts, and lots of other subsystems. It’s what allows piece by piece
investigation of problems, and piece by piece replacement of bad
parts.

Or think of a rock ’n’ roll tune. It’s not just an impenetrable mass
of sound. Instead, it’s a collection of recognizable bass lines, drum
sequences, vocal patterns, and variations on common guitar riffs. I
don’t mean to minimize the creativity involved in its orchestration;
in fact, the novel combination of the myriad possible building blocks
is the creativity. If the song were just an impermeable wall of sound,
it would be noise, not music.

In the same way, once your data analysis code approaches a certain
size, it really must be written in a modular way or it will become a
hopelessly tangled mess, what programmers refer to as “spaghetti
code.” And the way to achieve this is by writing it in terms of
functions that you then call at the appropriate time.

One other advantage to this approach, by the way, is that functions
are reusable. Think of how many programmers all over the world
have had reason to call np.sort(), or scipy.stats.pearsonr()!
The same function becomes applicable in a variety of different con-
texts, so that nobody has to reinvent the wheel.

22.2 The def statement

Okay, down to brass tacks. The way to create (not call) a function
in Python is to use the def statement. For our first example, let’s
write a function to compute an (American) football team’s score in
a game:

22.3. WRITING VS. CALLING 225

def football_score(num_tds, num_fgs):
return num_tds * 7 + num_fgs * 3

For those not familiar with football scoring, each “touchdown” (or
TD for short) a team scores is worth seven points, and each “field
goal” (or FG) is worth three. (For those who are familiar with
football scoring, please forgive the simplifications here – extra point
kicks, safeties, etc. It’s a first example.)

As you can see from the code snippet, above, the word def (which
stands for “define,” since we’re “defining” – a.k.a. writing – a func-
tion) is followed by the name of our function, which like a variable
name can be any name we choose. After the name is the list of
arguments to the function, in bananas.

All that is the header of the function. The body, like other
“bodies” we’ve seen (p. 137, p. 212) is indented underneath. The
football_score body is just one line long, but it can be as many
lines as necessary.

Finally, we see the word “return” on that last line. This is how we
control the return value which is given back to the code that called
our function (review section 5.3 on p. 38 if you need a refresher on
this). Whenever a return statement is encountered during the
execution of a function, the function immediately stops executing,
and the specified value is handed back to the calling code. More on
that in a minute.

22.3 Writing vs. calling

Now here’s one of the most perplexing things for beginners. Con-
sider this code:

226 CHAPTER 22. FUNCTIONS (1 OF 2)

team_name = "Broncos"
num_tds = 3
num_fgs = 2

def football_score(num_tds, num_fgs):
return num_tds * 7 + num_fgs * 3

It surprises many to learn that this code snippet does not compute
anything, football score or otherwise. The reason? We only wrote
a function; we didn’t actually call it.

This is sort of like building an impressive machine but then never
pushing the “On” button. The above code says to do four things:

1. Create a team_name variable and set its value to the string
"Broncos".

2. Create a num_tds variable and set its value to the integer 3.
3. Create a num_fgs variable and set its value to the integer 2.
4. Create a function called football_score which, if it is ever

called in the future, will compute and return the score of a
football game.

In other words, that last step is just preparatory. It tells Python:
“by the way, in case you see any code later on that calls a func-
tion named ‘football_score,’ here’s the code you should run in
response.”

To actually call your function, you have to use the same syntax we
learned on p. 20, namely:

team_name = "Broncos"
num_tds = 3
num_fgs = 2

the_score = football_score(num_tds, num_fgs)
print("The {} scored {} points.".format(team_name,

the_score))

22.4. NAMING ARGUMENTS 227

The Broncos scored 27 points.

Follow the thread of execution closely here. First, the three vari-
ables are created, in what I’ll often call “the main program.” By
“main,” I really just mean the stuff that’s all the way flush-left, and
thus not inside any “def.” It’s the main program in the sense that
when you execute the cell, it’s what immediately happens without
needing to be explicitly called.

Then, after those three variables are created, the football_score()
function is called, at which point the flow of execution is transferred
to the inside of the function. Since this simple function has only one
line of code in its body (the return statement), executing it is really
quick; but it’s still important to realize that for a moment, Python
isn’t “in” that Broncos cell at all. Instead it jumps to the function,
carries out the code inside it, and then returns the value...

...right back into the waiting arms of the main program, which
stores that returned value (an integer 27, as it turns out) in a
new variable named the_score. Then the flow continues, and the
print() statement executes as normal.

Bottom line: every time you want to run your function’s code –
whether that’s a hundred times, once, or not at all – you need to
call it by typing the name of the function (with no “def”) followed
by a banana-separated list of arguments.

22.4 Naming arguments

Speaking of arguments, here’s the next thing many students have
trouble with. The names of the variables that your main program
passes to the function are normally not the same as the arguments
defined by the function itself.

What? Yeah.

Consider this example:

228 CHAPTER 22. FUNCTIONS (1 OF 2)

jets_touchdowns = 1
jets_field_goals = 3
jets_total = football_score(jets_touchdowns, jets_field_goals)

colts_tds = 1
colts_fgs = 0
colts_total = football_score(colts_tds, colts_fgs)

print("The Jets won {} to {}.".format(jets_total, colts_total))

The Jets won 16 to 7.

This code contains two calls to the football_score() function. In
the first call, the variables jets_touchdowns (with value 2) and
jets_field_goals (0) were passed. In the second, colts_tds (1)
and colts_fgs (3) were. In neither case were the arguments lit-
erally named “num_tds” and “num_fgs”, which were the function’s
own argument names.

To be crystal clear: whenever football_score() is called, two
arguments are passed to it. The function chooses to name the first
one it receives “num_tds” and the second one it receives “num_fgs”.
But these are its own personal names. They normally have nothing
to do with what the calling code chooses to name them.

Why does it work this way? Perhaps this example makes clear
the reason. If the main program had to name its variables exactly
the same as the (indented) function did, then the function would
not be reusable. In order for it to be called with different values
in different contexts, there needs to be this flexible decoupling of
variable names.

To reinforce the lesson, note too that you can call a function without
even having variables in the main program at all:

x = football_score(5, 2)
print("Some mythical team scored {} points today.".format(x))

22.5. PASSING AGGREGATE DATA TO FUNCTIONS 229

Some mythical team scored 41 points today.

Here we literally passed the values 5 and 2 to the function, instead
of creating variables to hold them. The function doesn’t mind: it
just says, “hey man, whatever’s given to me in slot #1, I’m going to
name ‘num_tds,’ and whatever’s delivered through slot #2, I’m go-
ing to call ‘num_fgs.’ I don’t care what the outside world’s variable
names are...or even whether they have names at all. I just work
here.”

22.5 Passing aggregate data to functions

Even though the previous example involved passing atomic data to
a function, you can totally pass aggregate data as well. Suppose
we’d like to be able to easily compute the IQR (recall p. 150) of a
univariate data set. Writing a function to do that is a snap:

def IQR(some_data):
return some_data.quantile(.75) - some_data.quantile(.25)

We can now call it on anything we like, like our examples from
p. 150 and p. 159:

print("The IQR of the YouTube plays data is {}".format(IQR(num_plays)))
print("The IQR of the NCAA scoring data is {}".format(IQR(pts)))

The IQR of the YouTube plays data is 412.
The IQR of the NCAA scoring data is 15.

Again, we named the function’s own argument (some_data) some-
thing different than the variables it was called with (num_plays
first, and then pts). This is a happy and healthy thing.

230 CHAPTER 22. FUNCTIONS (1 OF 2)

22.6 Returning text

So far, our functions have returned numeric answers. But they can
certainly return text as well. Here’s a function which assembles a
person’s full name out of his or her constituent components:

def full_name(last_name, first_name, middle_initial):
return first_name + " " + middle_initial + ". " + last_name

my_full_name = full_name("Davies", "Stephen", "C")
her_full_name = full_name("Clinton", "Hillary", "R")

print("Your author's full name is: {}".format(my_full_name))
print("Another person's full name is: {}".format(her_full_name))

Your author's full name is: Stephen C. Davies
Another person's full name is: Hillary R. Clinton

(Recall from p. 34 that the “+” operator is used for the concatena-
tion of strings.)

22.7 Returning True or False

It’s common for a programmer to want a function which, instead
of returning a number or text, tells her whether or not something
is true. This lets her use the return value of such a function as the
condition of an if statement.

Here’s a trivial example:

def is_old_enough_to_vote(age):
if number >= 18:

return True
else:

return False

22.8. MULTIPLE RETURN STATEMENTS 231

x = is_old_enough_to_vote(13)
if x:

print("Yes, a 13-year-old can vote!")
else:

print("Alas, a 13-year-old must wait.")

if is_old_enough_to_vote(19):
print("Yes, a 19-year-old can vote!")

else:
print("Alas, a 19-year-old must wait.")

Alas, a 13-year-old must wait.
Yes, a 19-year-old can vote!

The values True and False are called boolean values, after the
19th-century mathematician George Boole. Note that in Python
they must begin with capital letters.

The somewhat odd-looking “if x:” line is possible because x was
set to the return value of a call to is_old_enough_to_vote(), and
that function returned a boolean value.

22.8 Multiple return statements

Another thing the “old enough to vote” example illustrates is the
presence of more than one return statement in a function. You
might have thought this was useless, since on p. 225 I mentioned
that as soon as a return is encountered during execution, the func-
tion is immediately completed. Why, then, would one ever have
more than one – the second one could never be reached, right?
Wrong. The branching nature of the if/else statement (above)
means that the first return will be skipped over in some situations
(negative arguments, etc.) so it’s perfectly sensible to have more
than one.

232 CHAPTER 22. FUNCTIONS (1 OF 2)

A more complicated example would be the “salutation” algorithm
from section 21.4 (p. 217), this time embodied in a function:

def salutation(gender, marital_status, degree):
if degree == "PhD" or degree == "MD":

return "Dr."
elif gender == "male":

return "Mr."
elif gender == "female":

if marital_status == "married":
return "Mrs."

elif marital_status == "single":
return "Miss"

else:
return "Ms."

else:
return "Mx."

my_salutation = salutation("male", "married", "PhD")
print("Why hello, {} Davies.".format(my_salutation))
print("And hello, {} Davies.".format(salutation("female",

"married", "BS")))

Why hello, Dr. Davies.
And hello, Mrs. Davies.

Wow, all that code is in one function? Yeah. That’s not unusual
at all, although you should strive to make functions as compact as
they can be. (The salutation() function is as compact as it can
be, actually: there’s no way to shorten it without changing what it
does.)

The salutation() function, as you can see, has a veritable crap-
ton of return statements – six in fact. But only one will ever be
reached, because as soon as one is reached, the function is officially
finished, and returns that value.

22.9. RETURNING NOTHING AT ALL 233

22.9 Returning nothing at all

Does it ever make sense for a function to return nothing? Oddly,
yes: if it has a useful side effect. One side effect is printing:

def cheer_for(team):
if team != "Christopher Newport":

print("Go {} go!!".format(team))
else:

print("Uhh...no.")

cheer_for("Mary Washington")
cheer_for("Lady Eagles")
cheer_for("Christopher Newport")

Go Mary Washington go!!
Go Lady Eagles go!!
Uhh...no.

Here, instead of “something = cheer_for(...)” we type plain-
old “cheer_for(...)”. That’s because there’s no return value to
capture, so there’s no point in setting it equal to anything. We call
the function just to enjoy its messages.

22.10 Calling a function from another
function

Finally, note that we can put any code we desire inside a function’s
body, including one or more calls to other functions! Check out this
bad boy:

234 CHAPTER 22. FUNCTIONS (1 OF 2)

def greet(first_n, last_n, middle_i, gender, status, deg, lang):
sal = salutation(gender, status, deg)
if lang == "Swedish":

greeting = "Hej"
elif lang == "Russian":

greeting = "Privet"
elif lang == "Hindi":

greeting = "Namaste"
else:

greeting = "Yo"
full = full_name(last_n, first_n, middle_i)
print("{}, {} {}!".format(greeting, sal, full))

greet("Greta","Thunberg","F","female","single","none","Swedish")
greet("Maria","Sharapova","S","female","single","none","Russian")
greet("Garry","Kasparov","K","male","married","BA","Russian")
greet("Angela","Merkel","D","female","married","PhD","German")

Hej, Miss Greta F. Thunberg!
Privet, Miss Maria S. Sharapova!
Privet, Mr. Garry K. Kasparov!
Yo, Dr. Angela D. Merkel!

In the course of its duties, greet()’s function body calls both
salutation() and full_name() for help. They each produce com-
ponents of its complete solution. Good teamwork!

Chapter 23

Functions (2 of 2)

Like many things in life, writing functions is best learned by exam-
ple. This chapter will feature several more of them that you can
learn from and imitate.

Basketball scoring: bb_pts()

Continuing the sports theme, the total points a basketball player
scores is related to the number of shots she makes of various kinds.
Typically, the “box score” of a game (see example in Figure 23.1)
reports three scoring stats: (1) the total number of “field goals”1 a
player made and attempted, (2) the number of these field goals, if
any, that were for three points2, and (3) the number of free throws
(“easy” penalty shots) the player attempted and made.

Confusingly, (1) includes (2). In other words, if the first number is
4 and the second is 1, the player didn’t score 4 regular two-point
baskets and 1 three-pointer, but rather 3 two-point baskets and 1
three-pointer.

In Figure 23.1, the FGM-A column gives the first of these three
categories, 3PM-A the second, and FTM-A the third. The PTS

1A “field goal” in basketball just means “a regular basket” – i.e., not a free
throw penalty shot.

2In most leagues, a basket is worth 2 points unless the shooter was farther
than a certain distance from the hoop when she shot it, in which case it’s worth
3.

235

236 CHAPTER 23. FUNCTIONS (2 OF 2)

Figure 23.1: A basketball box score.

column gives the total number of points that player scored. (For
example, Molly Sharman made 5 of her 8 attempted field goals,
one of which was for three points, and she also converted both free
throw attempts.)

All that took a lot longer to explain than the corresponding Python
function:

def bb_pts(fgm, threep_fgm, ftm):
return ((fgm - threep_fgm) * 2) + (threep_fgm * 3) + ftm

torys_pts = bb_pts(6, 0, 1)
print("Tory scored {} points.".format(torys_pts))
print("Emily scored {} points.".format(bb_pts(6,5,5)))
print("Lady Eagles scored {} points!".format(bb_pts(28,8,11)))

Tory scored 13 points.
Emily scored 22 points.
Lady Eagles scored 75 points!

237

Strictly speaking you don’t need all those bananas (regular PEM-
DAS order-of-operations applies) but I think it’s a good idea to
include them for clarity and grouping.

“Exceptions”: mean_no_outliers() and quiz_avg()

Sometimes we want to take the straight average of a data set, but
other times we may want to filter out any strange or exceptional
cases. Let’s say we’re computing the average age of a classroom of
college students, but we want to remove any adult learners over 30
since that would skew the result. We could do this sort of thing
with a function like this:

def mean_no_outliers(a, low_cutoff, high_cutoff):
return a[(a >= low_cutoff) & (a <= high_cutoff)].mean()

our_class = np.array([20,18,19,18,22,21,76,20,22,22,21,18])
print("The average age (excluding outliers) is {}.".format(

mean_no_outliers(our_class, 0, 30)))

The average age (excluding outliers) is 20.09090909090909.

We’ve provided two arguments to the function besides the data set
itself: a lower and upper bound. Anything falling outside that range
will be filtered out. In the example function call, we passed 0 for
the low_cutoff since we didn’t desire to filter anything at the low
end. (If we wanted to, say, also remove children from the data set,
we could have set that to 16 or so.)

By the way, you might find the number of decimal places printed
to be unsightly. If so, we could enhance our function by rounding
the result to (say) two decimals with NumPy’s round() function:

def mean_no_outliers(a, low_cutoff, high_cutoff):
return np.round(a[

(a >= low_cutoff) & (a <= high_cutoff)].mean(),2)

print("The average age (excluding outliers) is {}.".format(
mean_no_outliers(our_class, 0, 30)))

238 CHAPTER 23. FUNCTIONS (2 OF 2)

The average age (excluding outliers) is 20.09.

At this point you might think this function is getting pretty big
for a one-liner. I agree. Let’s split it up and use some temporary
variables to make it more readable:

def mean_no_outliers(a, low_cutoff, high_cutoff):
filtered_data = a[(a >= low_cutoff) & (a <= high_cutoff)]
filtered_average = np.round(filtered_data)
return np.round(filtered_average,2)

Much clearer!

A related but different example would be to remove a fixed number
of data points from the end, instead of data points outside a spec-
ified range. For instance, in my classes, I often give students (say)
eight quizzes during a semester, and drop the lowest two scores.
That could be done with:

def quiz_avg(quizzes):
dropped_lowest_two = np.sort(quizzes)[2:]
return dropped_lowest_two.mean()

filberts_quizzes = np.array([7,9,10,7,0,8,4,10])
print("Filbert's avg score was {}.".format(quiz_avg(

filberts_quizzes)))

Filbert's avg score was 8.5.

Filbert’s 0 and 4 were dropped, leaving him with a pretty good
semester score.

The trick to this implementation is sorting the quiz scores. Once
you do that, it’s easy to pick out the top six to take the average,
since the lowest two scores will be at the beginning of the (sorted)
array. Two notes here:

239

• We use the np.sort() function, not the .sort() method,
since we don’t want to permanently change the order of quizzes.
We only need a temporarily sorted copy so we can omit the
lowest two entries.

• That business in the boxies (“[2:]”) is a slice (recall sec-
tion 9.2 on p. 76) which says “only give me entries number 2
through the end of the array.” And that’s exactly what the
doctor ordered to omit the first two.

Searching for values: any_zeros()

I’ll end this chapter with an example which, like the “preferred
language” example on p. 214, flummoxes nearly every beginning
student.

Suppose students in a DATA 101 course are given labs to complete,
each one worth up to 20 points. (This is purely hypothetical, as
you can see.) At the midway point of the semester, the instructor
would like a quick list of any students who failed to turn in one of
the labs, so he can harass them for their own good.

Here’s the gradebook DataFrame this professor is using:

Q1 Q2 Q3 Q4 lab1 lab2 lab3 lab4 lab5
student
Filbert 7 9 10 7 15 19 14 20 20
Jezebel 8 7 0 6 12 12 16 0 20
Betty Lou 10 10 10 10 20 20 20 20 20
Biff 3 2 6 5 10 12 0 0 16
Melvin 0 0 10 10 0 18 20 14 20

Let’s write a function called print_harass_list() whose job is to
tell this professor which students he should check up on. We’ll write
it as follows:

def print_harass_list(gradebook):
for row in gradebook.itertuples():

if any_zeros(np.array([row.lab1, row.lab2, row.lab3,
row.lab4, row.lab5])):
print("Better check up on {}.".format(row.Index))

240 CHAPTER 23. FUNCTIONS (2 OF 2)

Note that we’ve pushed some of the work on to a new function,
any_zeros(), that we haven’t written yet. This is good organiza-
tional style. Now print_harass_list() can do the job of iterating
through the DataFrame rows, extracting the lab scores, and printing
a message if necessary, whereas it defers to any_zeros() to inspect
the lab scores and determine the presence of any zeros.

It doesn’t work until we actually write the second function, of
course, so here goes. Heads up, since this is the part that perplexes
students. The following implementation of any_zeros() looks per-
fectly reasonable, yet is dead WRONG:

def any_zeros_WRONG(labs):
for lab in labs:

if lab == 0:
return True

else:
return False

It looks so correct! And yet it is not. Check out the result:

print_harass_list(gradebook)

Better check up on Melvin.

Clearly we need to check up on Jezebel and Biff as well (look
at their scores for labs 3 and 4), yet they inexplicably didn’t get
printed.

Here’s what’s WRONG with that any_zeros() attempt. Stare
carefully at that loop and realize that the body of the loop is com-
prised of a single if/else statement. And remember our cardinal
rule from the grey box on p. 214: either the if body or the else
body will always be executed.

That means that this loop is destined to only execute exactly once!
It doesn’t matter how long the labs array is. It effectively looks

241

only at the first element, and decides based solely on that whether
or not the entire array has any zeros in it!

The correct version of any_zeros() would look like this:

def any_zeros(labs):
for lab in labs:

if lab == 0:
return True

return False

At first glance, it may appear unchanged, but look again. First of
all, there’s no else anymore. Second of all, the “return False”
line is indented evenly with the word for. This means that “return
False” is not part of the loop at all: it will only run after the entire
loop has executed.

That turns out to make all the difference. The function will du-
tifully go through each element of the labs array, inspecting each
one to see whether it’s zero. As soon as it finds a zero, it returns
True, since then its job is done. Only after inspecting the entire
array, and coming up empty on its zero quest, does this function
then have the audacity to return False, meaning “nope! Clean as
a whistle.” The result:

Better check up on Jezebel.
Better check up on Biff.
Better check up on Melvin.

Postlude: thinking algorithmically

Getting tripped up on that last example is, I believe, usually a
case of thinking holistically rather than thinking algorithmically.
Math classes have trained people to think holistically, by which
I mean looking at (say) a bunch of equations and viewing them
as “all equally true, all at once.” And this is the correct way to
think mathematically. If I give you five simultaneous equations

242 CHAPTER 23. FUNCTIONS (2 OF 2)

that state relationships among variables, they aren’t really in any
order. They’re just “five true things.”

But programming requires you to think algorithmically. You have
to execute the code in your head, step by step, and realize the con-
sequences. The appealing symmetry of the WRONG any_zeros()
function is appealing because you’re looking at it as a whole: “it’s
looping (seemingly) through all the elements, with zeros being an in-
dicator of Trueness and non-zeros being an indicator of Falseness.
What’s not to like?” The error, as you saw, is that when running
through the data step-by-step, there are immense ramifications of
returning early. That’s only apparent if you think of the code ex-
ecuting sequentially as it goes. You have to pretend you’re the
computer, not a mathematician.

Chapter 24

Recoding and transforming

It’s often the case that although a DataFrame contains the raw
information you need, it’s not exactly in the form you need for
your analysis. Perhaps the data is in different units than you need
– meters instead of feet; dollars instead of yen. Or perhaps you
need some combination of available quantities – miles per gallon
instead of just miles and gallons separately. Or perhaps you need
to reframe a variable by binning it into meaningful subdivisions –
categorizing a raw column of salaries into “high,” “medium,” and
“low” wage earners, for instance.

In data science, these activities are known as recoding and/or
transforming. There’s not a sharp division between the two;
usually I think of recoding as converting a single variable to one
with different units (as in the dollars-to-yen and high/medium/low
earners examples) and transforming as creating a new variable en-
tirely out of a combination of columns (like miles per gallon). In
both cases, though, we’ll be creating and adding new columns to a
DataFrame. These columns are sometimes called derived columns
since they’re based on (derived from) existing columns rather than
containing independent information.

243

244 CHAPTER 24. RECODING AND TRANSFORMING

24.1 Recoding with simple operations

Consider the following soccer data set called worldcup2019.csv.
Each row of this data set represents one player’s performance in a
particular 2019 World Cup game. Notice that we have a couple of
players with more than one row (Megan Rapinoe and Rose Lavelle),
and several rows for the same game (the first four rows are all from
the June 28th game, for instance):

last,first,date,inmins,insecs,outmins,outsecs,gls,asst,tkls,shots
Morgan,Alex,28-Jun-2019,0.0,0.0,90.0,0,0,0,0,2,1
Rapinoe,Megan,28-Jun-2019,0.0,0.0,74.0,27.0,2,0,2,3
Press,Christen,28-Jun-2019,74.0,27.0,90.0,0.0,0,0,1,0
Lavelle,Rose,28-Jun-2019,0.0,0.0,90.0,0.0,0,1,3,0
Lavelle,Rose,7-Jul-2019,0.0,0.0,90.0,0.0,1,0,4,1
Rapinoe,Megan,7-Jul-2019,0.0,0.0,83.0,16.0,1,1,3,2
Lloyd,Carli,7-Jul-2019,83.0,16.0,90.0,0.0,0,0,1,0
Dunn,Crystal,23-Jun-2019,42.0,37.0,81.0,5.0,0,1,1,2

The data set doesn’t really have a meaningful index column, since
none of the columns are expected to be unique. So we’ll leave off
the “.set_index()” method call when we read it in to Python:

wc = pd.read_csv('worldcup2019.csv')
print(wc)

last first date inmins insecs outmins outsecs gls asst tkls shots
Morgan Alex 28-Jun 0 0 90 0 0 0 2 1

Rapinoe Megan 28-Jun 0 0 74 27 2 0 2 3
Press Chris 28-Jun 74 27 90 0 0 0 1 0

Lavelle Rose 28-Jun 0 0 90 0 0 1 3 0
Lavelle Rose 7-Jul 0 0 90 0 1 0 4 1
Rapinoe Megan 7-Jul 0 0 83 16 1 1 3 2

Lloyd Carli 7-Jul 83 16 90 0 0 0 1 0
Dunn Cryst 23-Jun 42 37 81 5 0 1 1 2

Let’s zero in on the columns with mins and secs in the names.
These columns show us the minute and second that the player went

24.1. RECODING WITH SIMPLE OPERATIONS 245

in to the game, and the minute and second that they came out. For
example, Alex Morgan played the entire 90-minute match on June
28th. Rapinoe started that game, but came out for a substitute
at the 74:27 mark. Who replaced her? Looks like Christen Press
did, since she entered the game at exactly the same time. In most
rows, the player either started the game, or ended the game or both,
but the last row (Crystal Dunn’s June 23rd performance) has her
entering at 42:37 and exiting at 81:05.

Now the reason I bring this up is because one aspect of our analysis
might be computing statistics per minute that each athlete played.
If one player scored 3 goals in 200 minutes, for example, and another
scored 3 goals in just 150 minutes, we could reasonably say that the
second player was a more prolific scorer in that World Cup.

This is hard to do with the data in the form that it stands. So we’ll
recode a few of the columns. Let’s collapse the minutes and sec-
onds for each of the two clock times into a single value, in minutes.
For readability, we’ll also round this number to two decimal places
using the round() function we met on p. 237:

wc['intime'] = np.round(wc['inmins'] + (wc['insecs']/60),2)
wc['outtime'] = np.round(wc['outmins'] + (wc['outsecs']/60),2)

We’re taking advantage of vectorized operations here. For each
row, we need to divide the insecs value by 60 (to convert it to
minutes) and add it to the inmins value. Pandas makes this super
easy here, since we can just write out those operations once, and it
will compute it for every single row!

Let’s delete the old, superfluous columns now and looksie:

del wc['inmins']
del wc['insecs']
del wc['outmins']
del wc['outsecs']
print(wc)

246 CHAPTER 24. RECODING AND TRANSFORMING

last first date gls asst tkls shots intime outtime
0 Morgan Alex 28-Jun 0 0 2 1 0.00 90.00
1 Rapinoe Megan 28-Jun 2 0 2 3 0.00 74.45
2 Press Chris 28-Jun 0 0 1 0 74.45 90.00
3 Lavelle Rose 28-Jun 0 1 3 0 0.00 90.00
4 Lavelle Rose 7-Jul 1 0 4 1 0.00 90.00
5 Rapinoe Megan 7-Jul 1 1 3 2 0.00 83.27
6 Lloyd Carli 7-Jul 0 0 1 0 83.27 90.00
7 Dunn Cryst 23-Jun 0 1 1 2 42.62 81.08

This is much less unwieldy (more wieldy?) than dealing with min-
utes and seconds separately.

(Incidentally, notice that the technique presented here creates new columns
(with new names) and then deletes the old columns. I strongly recom-
mend doing it this way. If you try to change the values of an existing
DataFrame column, Pandas will often give you a strange-looking message
informing you of a “SettingWithCopyWarning”. The meaning is a bit
esoteric, but in layman’s terms it means “your operation may not have
actually worked.” Avoid this problem by creating new columns instead.)

24.2 Transforming with simple operations

Now that we’ve converted the awkward minutes-and-seconds columns
to just “time” columns, all we need to do to complete our analysis
is transform this data by computing a new quantity entirely: the
total number of minutes played for each player in each game. Again,
Pandas makes this easy:

wc['minsplayed'] = wc.outtime - wc.intime
print(wc)

last first date gls asst tkls shots intime outtime minsplayed
0 Morgan Alex 28-Jun 0 0 2 1 0.00 90.00 90.00
1 Rapinoe Megan 28-Jun 2 0 2 3 0.00 74.45 74.45
2 Press Chris 28-Jun 0 0 1 0 74.45 90.00 15.55
3 Lavelle Rose 28-Jun 0 1 3 0 0.00 90.00 90.00
4 Lavelle Rose 7-Jul 1 0 4 1 0.00 90.00 90.00
5 Rapinoe Megan 7-Jul 1 1 3 2 0.00 83.27 83.27
6 Lloyd Carli 7-Jul 0 0 1 0 83.27 90.00 6.73
7 Dunn Cryst 23-Jun 0 1 1 2 42.62 81.08 38.46

24.2. TRANSFORMING WITH SIMPLE OPERATIONS 247

Voilà. We now have the time-on-field for each player, which gives
us a whole new avenue of exploration. For example, any of the
counting stats (goals, assists, etc.) can be converted into a “per-
minute” version, showing us how productive a player was while on
the field. Let’s do that for tkls (“tackles”), and multiply by 90 to
obtain a “tackles-per-90-minutes” statistic1:

wc['minsplayed'] = wc['outtime'] - wc['intime']
wc['tkl_per_90'] = np.round(wc['tkls'] /

wc['minsplayed'] * 90,2)
del wc['tkls']

last first date gls asst shots intime outtime minsplayed tkl_90
0 Morgan Alex 28-Jun 0 0 1 0.00 90.00 90.00 2.00
1 Rapinoe Megan 28-Jun 2 0 3 0.00 74.45 74.45 2.42
2 Press Chris 28-Jun 0 0 0 74.45 90.00 15.55 5.79
3 Lavelle Rose 28-Jun 0 1 0 0.00 90.00 90.00 3.00
4 Lavelle Rose 7-Jul 1 0 1 0.00 90.00 90.00 4.00
5 Rapinoe Megan 7-Jul 1 1 2 0.00 83.27 83.27 3.24
6 Lloyd Carli 7-Jul 0 0 0 83.27 90.00 6.73 13.37
7 Dunn Cryst 23-Jun 0 1 2 42.62 81.08 38.46 2.34

Transforming grouped data

The above example computed tackles-per-game all right, but it
still left us with one row for every player-performance. (In other
words, the results had two rows for Rose Lavelle, one giving her
tkl_per_90 for the June 28th game, and one giving it for the July
7th game.)

We might instead be interested in a player-by-player analysis: over-
all in the entire month-long World Cup, which players had the
most tackles-per-game? This is easy to do with the .groupby()
method that we first encountered in section 18.2 (p. 189). First, we
group the rows by the first two columns (since first-and-last-names-
together are needed to uniquely identify a single player):

1I’m choosing 90 minutes here because that’s how long a regulation-length
soccer match is. Therefore, our new tkl_per_90 column gives us “number-
of-tackles-per-complete-game,” which is easier to interpret than “tackles-per-
minute,” which would be a miniscule number for any player.

248 CHAPTER 24. RECODING AND TRANSFORMING

grouped_wc = wc.groupby(['last','first'])

We then take our new, temporary grouped_wc variable and ex-
tract the gls, asst, shots, tkls, and minsplayed columns from
it, summing each of them to produce the per-player values in the
result:

by_player = grouped_wc[['gls','asst','shots','tkls',
'minsplayed']].sum()

This yields:

gls asst shots tkls minsplayed
last first
Dunn Cryst 0 1 2 1 38.46
Lavelle Rose 1 1 1 7 180.00
Lloyd Carli 0 0 0 1 6.73
Morgan Alex 0 0 1 2 90.00
Press Chris 0 0 0 1 15.55
Rapinoe Megan 3 1 5 5 157.72

Now, we’re ready to compute a per-game analysis as before, but
this time for each player’s entire World Cup games:

by_player['tkl_per_90'] = (np.round(by_player['tkls'] /
by_player['minsplayed'] * 90,2))

del by_player['tkls']

gls asst shots minsplayed tkl_per_90
last first
Dunn Cryst 0 1 2 38.46 2.34
Lavelle Rose 1 1 1 180.00 3.50
Lloyd Carli 0 0 0 6.73 13.37
Morgan Alex 0 0 1 90.00 2.00
Press Chris 0 0 0 15.55 5.79
Rapinoe Megan 3 1 5 157.72 2.85

24.3. MORE COMPLEX TRANSFORMATIONS 249

24.3 More complex transformations

In all the above examples, we took advantage of Pandas vectorized
operations. With just a single line of code like “wc['minsplayed']
= wc.outtime - wc.intime”, we could compute our entire new
transformed column in one fell swoop.

Sometimes, we’re not so lucky. In particular, if the computation
of the transformed column is more complicated than just numeric
operations – like, if it involves branches, loops, or calling other
functions – we normally can’t compute it all at once. Instead, we
have to resort to a loop.

Pandas makes this procedure a bit awkward in my opinion. But
once you learn the pattern, it’s not hard to imitate. Here’s the
pattern for creating a transformed/recoded column that requires
more complex operations:

1. Create a function that will compute the transformed value
for a single row. Its arguments should be whatever column
values are necessary to derive the new value, and its return
value should be the desired transformation.

2. Create an empty NumPy array to hold the row-by-row results,
and make sure it’s the right type.

3. Write a loop that will iterate through all the rows of the orig-
inal DataFrame. For each row, pass the appropriate values to
the function, and then append the return value to the ever-
growing NumPy array.

4. Finally, slap that NumPy array on to the DataFrame as a new
column.

Here’s a couple examples. First, suppose we want to compute a
shooting percentage for each player; in other words, how many goals
they scored per shot they took. Now you might think we could
simply use vectorized operations:

250 CHAPTER 24. RECODING AND TRANSFORMING

wc['shots_per_goal'] = wc.gls / wc.shots

The problem is, for players who never attempted a shot in the
game, this would result in dividing by zero, a cardinal sin. Sports
convention says that if a player makes 0 goals in 0 attempts, their
shooting percentage is 0.00, even though mathematically-speaking
this is undefined.

Very well, following our procedure from above, we’ll first define a
function shooting_perc():

def shooting_perc(gls, shots):
if shots == 0:

return 0.0
else:

return np.round(gls / shots * 100, 1)

Then, we create an empty NumPy array. Here’s how:

s_perc = np.array([])

Looks weird, I know. But remember, the array() function (review
p. 63) takes a boxie-enclosed list of elements. If we enclose nothing
inside the boxies, that effectively makes it an empty list.

And why would we want to do that? Because we need to continually
add to this array, one value for each row in the DataFrame. At the
end, there must be exactly as many elements in s_perc as there are
rows in wc, otherwise we won’t be able to add it as a new column.

Here’s the loop (step 3 from the shaded box):

24.3. MORE COMPLEX TRANSFORMATIONS 251

for row in wc.itertuples():
new_s_perc = shooting_perc(row.gls, row.shots)
s_perc = np.append(s_perc, new_s_perc)

I’ve chosen to create a temporary variable here (new_s_perc) for
readability. The first line of the loop body says to take the current
row’s gls and shots values, and send them as arguments to the
shooting_perc() function. That function, which we defined above,
will return us a single number which is the shooting percentage for
that row. The second line then appends that single new_s_perc
value to the end of the ever-growing s_perc array.

Finally, we add this new column to the wc DataFrame proper:

wc['s_perc'] = s_perc

which gives us:

last first date gls asst shots intime outtime minsplayed s_perc
0 Morgan Alex 28-Jun 0 0 1 0.00 90.00 90.00 0.0
1 Rapinoe Megan 28-Jun 2 0 3 0.00 74.45 74.45 66.7
2 Press Chris 28-Jun 0 0 0 74.45 90.00 15.55 0.0
3 Lavelle Rose 28-Jun 0 1 0 0.00 90.00 90.00 0.0
4 Lavelle Rose 7-Jul 1 0 1 0.00 90.00 90.00 100.0
5 Rapinoe Megan 7-Jul 1 1 2 0.00 83.27 83.27 50.0
6 Lloyd Carli 7-Jul 0 0 0 83.27 90.00 6.73 0.0
7 Dunn Cryst 23-Jun 0 1 2 42.62 81.08 38.46 0.0

Rose Lavelle’s July 7th game was the only perfect shooting perfor-
mance in this data set – who knew?

We’ll complete this chapter with a slightly more complex example,
but which still follows the shaded box pattern.

Say we’re also interested in which players started which games (as
opposed to being a mid-game substitute). Obviously, a starter is
someone who entered the game at time 0. To create a new column

252 CHAPTER 24. RECODING AND TRANSFORMING

for this, we’ll need our function to return the boolean value True
if the player’s intime value was zero, and False otherwise. Here’s
the complete code snippet for this transformation:

def starter_func(intime):
if intime == 0:

return True
else:

return False

starter = np.array([]).astype(bool)

for row in wc.itertuples():
starter = np.append(starter, starter_func(row.intime))

wc['starter'] = starter

last first date gls asst tkls shots minsplayed s_perc starter
0 Morgan Alex 28-Jun 0 0 2 1 90.00 0.0 True
1 Rapinoe Megan 28-Jun 2 0 2 3 74.45 66.7 True
2 Press Chris 28-Jun 0 0 1 0 15.55 0.0 False
3 Lavelle Rose 28-Jun 0 1 3 0 90.00 0.0 True
4 Lavelle Rose 7-Jul 1 0 4 1 90.00 100.0 True
5 Rapinoe Megan 7-Jul 1 1 3 2 83.27 50.0 True
6 Lloyd Carli 7-Jul 0 0 1 0 6.73 0.0 False
7 Dunn Cryst 23-Jun 0 1 1 2 38.46 0.0 False

One subtle point that is easy to miss: when we first created the
empty starter array, we typed “.astype(bool)” at the end. This
is because by default, the values of a new empty array will be
floats. This worked fine for the shooting percentage example, be-
cause that’s actually what we wanted, but here we want True/False
values instead (for “starter” and “non-starter.”)

Pretty cool, huh? The original DataFrame had the information we
wanted, but not in the form we really needed it. What we wanted
was not the entry time and exit time of each player (both in minutes
and seconds) but rather the total time that player was on the pitch,
and whether or not they started the game. We also wanted to con-
vert several of the raw statistics into per-complete game numbers,

24.3. MORE COMPLEX TRANSFORMATIONS 253

and to compute meaningful ratios like shooting percentage or fouls
per assist.

Recoding and transforming turn out to be common tasks for a sim-
ple reason: whoever collects a data set can rarely predict how an
analyst will eventually use it. We’re very grateful to the author of
the .csv file, since it contains the raw material we need to eval-
uate our team’s performances; but how were they to know that
length-of-time-on-the-field and who-started-which-game was going
to be important to us? They couldn’t. But thanks to recoding and
transformation skills, we can cope.

Chapter 25

Machine Learning:
concepts

When ordinary people hear the words “Data Science,” I’ll bet the
first images that come to mind are of the closely-related fields of
data mining and machine learning (ML), even if they don’t
know those terms. After all, this is where all the sexy tech is, and
the success stories too: Netflix magically knowing which movies
you’ll like, grocery chains using data from loyalty cards to optimally
place products; the Oakland A’s scouring minor league stats to
build a champion team with chump change (see: Moneyball). There
are also creepier applications of this technology: Google placing
personalized eye-catching ads in front of you using data they mined
from your email text, or Cambridge Analytica projecting from voter
personalities to the best ways to micro-target them.

All these examples have one thing in common: they actually make
the discoveries and predictions from the data. They’re the coup
de grâce. They take place after we’ve already acquired our data,
imported it to an analysis environment (like Python), stored it in
the appropriate data structures (like associative arrays or tables),
recoded/transformed/pre-processed it as necessary, and explored it
enough to know what we want to ask. All that stuff was mere prep
work. This chapter is where we begin to really rock-and-roll.

255

256 CHAPTER 25. MACHINE LEARNING: CONCEPTS

25.1 Data mining vs. machine learning

The terms “data mining” and “ML” have a lot of sloppy overlap, but
one distinction we can pick out is this. If someone says they’re doing
data mining, their goal is normally inference: deriving high-level
strategic insights based on patterns in the data. Discovering that
amateur pitching performances translate more reliably to the major
leagues than amateur batting performances do, generally speaking,
is an inference, and a potentially valuable find.

If someone says they’re doing ML, on the other hand, their goal
is normally prediction: making an educated guess about how a
specific case will turn out. When we forecast how many home runs
we think a college prospect will hit in his first two years in the
majors, we’re making a specific prediction rather than inferring a
general truth – this, too, is potentially quite valuable, as it may
lead us to decide to sign the player or look at different options.

25.2 Deductive vs. inductive reasoning

This chapter contains a lot of vocabulary terms. Before we dive
in to the ML-specific ones, I think it’s important to take a step
back and make a more general point about the kind of “learning”
we’ll be doing. There are at least two different ways that human
beings reach conclusions: deductively and inductively. Deduc-
tive reasoning is associated most prominently with Sherlock Holmes
in the public mind. Through sheer application of irrefutable logic,
Holmes and his companion Watson deduced new facts from known
facts in their quest to catch the criminal. Their logic was seem-
ingly air-tight, since everything they deduced followed directly and
irresistibly from what came before.

There’s a subdiscipline of Philosophy called Logic which covers ex-
actly such matters. Syllogisms, modus ponens, first-order predicate
calculus: these are all concepts you’ll learn if you take an intro-
ductory course in Logic. And the nice thing about deduction is
that as long as you follow the rules, your conclusions will always be
dependably correct.

25.2. DEDUCTIVE VS. INDUCTIVE REASONING 257

Inductive reasoning, on the other hand, does not always lead to
100% reliably correct conclusions. This may give you pause, and
wonder why anyone would ever use it. The reason is that in the
vast majority of cases, deductive reasoning simply isn’t applicable
to your situation, and induction is the only case.

Induction is about reasoning from examples. Lots of examples. Liv-
ing in the world as we do, we observe plenty of examples of how
people and things behave, and we start to identify certain general
patterns in what we’ve observed. One thing I noticed long ago is
that when I smile and say hi to a person, they normally smile and
say hi back. But when I smile and say hi to a dog, or a bush, or a
vending machine, I’m normally met with stony silence.

From this, I’ve induced the general rule that people respond to
greetings but other objects don’t. Now this is not 100% reliably
true. Even in my own experience, there have been times when I’ve
greeted someone walking down the hallway and been outright ig-
nored. And for all I know, there may be some vending machines out
there who might respond if someone talks to them – with technolog-
ical advancements in voice recognition and synthesis, it’s probably
just a matter of time before they do. But the point is that learning
this general principle about greetings has served me very well in life.
I don’t normally talk to inanimate objects, but I do to people, and
this has helped me function in society. Even if a rule isn’t accurate
in absolutely every situation, it can still be very, very important.

If you do a quick scan of your brain, I believe you’ll find that the vast
majority of the things that you “know” about life were arrived at
inductively, rather than deductively. If you ask a friend for money,
he’ll probably say yes; if you ask a stranger, he’ll probably say
no. If your friend does say yes, he’ll probably expect the favor to
be returned at a later point; if the stranger says yes, he probably
won’t. If you don’t study for a test, you’ll probably do poorly, and
likewise if you wait until the last day to start your 5-page paper.
None of these conclusions can be proven deductively, and in fact all
of them have exceptions; but not to know these things is to be at a
serious disadvantage in trying to make decisions.

I say all this because everything in ML is about induction, not de-

258 CHAPTER 25. MACHINE LEARNING: CONCEPTS

duction. As we’ll see, the name of the game in ML is looking at
lots and lots of past examples, and making future predictions based
on them. It’s true that “past performance is no guarantee of future
success,” but past performance does tell you something valuable
about future possibilities, else there’d be no point in trying to learn
from it. And the fact that we apply our past lessons in altering our
future behavior is undeniable.

25.3 Supervised vs. unsupervised learning

Now let’s dive further down to some more technical and fine-grained
distinctions. There are two main categories of machine “learning”:
supervised and unsupervised. I think these terms are ridiculous
and misleading, by the way, but they’re what we’re stuck with so
let’s learn what they mean.

In a supervised learning setting, our goal is to predict the value of
some target attribute of some object of study. As an example,
let’s say we want to predict someone’s mood based only on their
facial expression and body language. “Mood” might be a categorical
variable with values “happy,” “angry,” “bored,” etc.

To do this prediction, we’ll use a bunch of previously observed ex-
amples. These past examples, for which the person’s true mood
is known, are collectively called our training data. We remem-
ber seeing one person with a smile on their face and their eyes
slightly squinted, and later discovered that they were happy. We
remember another person with a smile but with wide open eyes,
and learned that they, too, were happy. We also remember some-
one with clenched fists and raised eyebrows, and they turned out
to be frightened. A different person with clenched fists but squinted
eyes was later revealed to be angry. And so on.

Supervised machine learning is about how to extrapolate from past
examples in a principled way, in order to make predictions about
future examples whose true value (mood, say) is not known. The
task is to say, “okay, there’s a person down the hallway whose face
is slightly flushed and whose arms are tightly crossed. Are they
likely to be happy, defensive, angry, embarrassed, or something else?

25.3. SUPERVISED VS. UNSUPERVISED LEARNING 259

Let’s apply what we’ve learned from past examples to guess at the
answer.”

It’s called “supervised” precisely because the “true answer” for the
target attribute is known for the training data.

Now suppose we didn’t know the true answer for our training ex-
amples. Say we’ve observed and recorded the eyebrow position, the
mouth configuration, whether the face was flushed or pale or in be-
tween, etc., for a bunch of people we’ve encountered in the past,
but we actually never learned what their mood was. What then?

This is an unsupervised learning setting. Predicting a person’s
mood based on this kind of information turns out to be nearly
hopeless. If we don’t know what anyone else’s mood was, how can
we predict what this new person’s mood is? But all is not lost –
we may still be able to form some conclusions about what types
of moods there are. For example, we might notice that generally
speaking, raised eyebrows tend to be accompanied by certain other
indicators. In many past examples, they’ve appeared together with
an open mouth and a rigid posture. In other examples, raised eye-
brows instead appeared with lips tightly-pressed together and the
forehead slightly tilted forward. We don’t know which moods these
collections of features might correspond to, since our training data
didn’t have any information about moods. But we might still in-
fer the presence of a couple of distinct raised-eyebrow moods, since
they are so commonly accompanied by either one of two groups of
other features.

Classification, regression, and clustering

In the supervised setting, our most common machine learning ac-
tivities will be classification and regression. In each one, our job
is to predict the value of the target attribute for a new object, based
on the previous example objects we’ve seen. The only difference is
the scale of measure of the target variable: if it’s categorical, we’re
performing classification, and our goal is to build a classifier: an
algorithm (basically, a Python function) that can classify future
examples by guessing their target value. If the target variable is nu-
meric, then we have regression, and our goal is to make the closest

260 CHAPTER 25. MACHINE LEARNING: CONCEPTS

guess we can to the true target value.

For example, if we have some census and earnings data for a region,
and our goal is to predict whether or not someone in that region will
be a homeowner or a renter, we’re performing classification. If our
goal instead is to predict their annual salary, we’re doing regression.

By the way, let me make clear that the types of the other vari-
ables we’re considering (i.e., other than the target) don’t play in
to whether we’re doing classification or regression: only the tar-
get does. If I’m using race (categorical), gender (categorical), age
(numeric), and college degree (categorical) to predict salary (nu-
meric), then this is a regression problem, even though the majority
of the variables are categorical. If I were to use the same four vari-
ables to predict political affiliation (categorical), then it would be
a classification problem, even though we had a numeric variable as
a predictor.

In the unsupervised setting, the most common task is clustering:
finding groups of related objects, with similar attribute values, in
order to discern how many basic types of objects there are, and
what their typical value ranges are. That’s exactly what we did
with the mood data, above, in the absence of information about
past moods. Another example would be to look at the attributes
of various movies on IMDB and discern “what basic types of films
there are.” We may discover that movies naturally break down into
blockbuster action films, period dramas, romantic comedies, and a
few other common genres. There will always be objects that defy
categorization, and exist on the boundaries of defined clusters, but
it’s still profoundly insightful to discover the presence of common
patterns that bring structure to the data.

Machine learning is a big field, and each aspect has its own tech-
niques and deserves its own treatment. For the rest of this book,
we’re going to concentrate only on supervised learning, specifically
the task of classification.

Chapter 26

Classification: concepts

26.1 Labeled and unlabeled examples

In the activity of classification, the target variable we aim to pre-
dict is categorical. We sometimes also call this variable the label.
Since this is a supervised process, we are provided with example
objects of study that have known “true answers.” These are called
labeled examples. The goal of the activity is to produce good pre-
dictions of the labels for other, unlabeled examples. A program
that can make such predictions, after having studied the labeled
examples, is called a classifier.

The predicted label can be seen as the “output” from our classifier.
All of the other variables are essentially the inputs to our process,
which we use to make our predictions. These variables are called
features (or sometimes, attributes).

In terms of Pandas data structures, all these labeled examples
will normally come packaged in a DataFrame. Each row of the
DataFrame will be one labeled example, with its features as columns
and its target/label as a column (traditionally, the rightmost one).

This is illustrated in Figure 26.1. Here we have some labeled exam-
ples for a data set on NFL fans. Each row represents one fan, and
shows various features of their existence – how old they are, where
they were born, where they live now, and how many years they’ve

261

262 CHAPTER 26. CLASSIFICATION: CONCEPTS

lived in their current residence. The rightmost column gives the
target: the team to whom this fan has sworn their allegiance. Our
aim would be to predict which team a fan might root for, based on
what we know about them. Lest you think this example is frivolous,
consider that a sporting goods company might want to send cat-
alogs (paper or electronic) to potential customers, and it would
probably boost sales if the cover image of the catalog featured a
model wearing apparel from the customer’s favorite team, rather
than their rival.

Figure 26.1: Some labeled examples, divided into training and test sets.

You’ll also see in the figure that I’ve split the rows up into two
groups. The first group is called the training data, and the second,
the test data. (Normally we’ll shuffle all the rows before assigning
them, so that we don’t put all the top rows of the DataFrame in
the training set and all the bottom ones in the test set. But that’s
harder to show in a picture.)

26.2 Three kinds of examples

Now here’s the deal. There are three kinds of example rows we’re
going to deal with:

1. training data – labeled examples which we will show to our
classifier, and from which it will try to find useful patterns to
make future predictions.

26.2. THREE KINDS OF EXAMPLES 263

2. test data – labeled examples which we will not show to our
classifier, but which we will use to measure how well it per-
forms.

3. new data – unlabeled examples that we will get in the future,
after we’ve deployed our classifier in the field, and which we
will feed to our classifier to make predictions.

The purpose of the first group is to give the classifier useful infor-
mation so it can intelligently classify.

The purpose of the second group is to assess how good the classifier’s
predictions are. Since the test set consists of labeled examples, we
know the “true answer” for each one. So we can feed each of these
test points to the classifier, look at its prediction, compare it to the
true answer, and judge whether or not the classifier got it right.
Assessing its accuracy is usually just a matter of computing the
percentage of how many test points it got right.

The third group exists because after we’ve built and evaluated our
classifier, we actually want to put it into action! These are new data
points (new sporting goods customers, say) for which we don’t know
the “true answer” but want to predict it so we can send catalogs
likely to be well-received.

Thou shalt not reuse

Now one common question – which leads to a super important point
– is this: why can’t we use all the labeled examples as training data?
After all, if we have 1000 labeled examples we’ve had to work hard
(or pay $$) to get, it seems silly to only use some of them to train
our classifier. Shouldn’t we want to give it all the labeled data
possible, so it can learn the maximum amount before predicting?

The first reply is: “but then we wouldn’t have any test data, and
so we wouldn’t know how good our classifier was before putting it
out in the field.” Clearly, before we base major business decisions
on the results of our automated predictor, we need to have some
idea of how accurate its predictions are.

It’s then often countered: “sure, but why not then re-use that data
for testing? Instead of splitting the 1000 examples into training

264 CHAPTER 26. CLASSIFICATION: CONCEPTS

points and test points, why not just use all 1000 for training, and
then test the classifier on all 1000 points? What’s not to like?”

This is where the super important point comes in, and it’s so impor-
tant that I’ll put it all in boldface. It turns out that you absolutely
cannot test your classifier on data points that you gave it
to train on, because you will get an overly optimistic esti-
mate of how good your classifier actually is.

Here’s an analogy to make this point more clear. Suppose there’s a
final exam coming up in your class, and your professor distributes
a “sample exam” a week before exam day for you to study from.
This is a reasonable thing to do. As long as the questions on the
sample exam are of the same type and difficulty as the ones that
will appear on the actual final, you’ll learn lots about what the
professor expects you to know from taking the sample exam. And
you’ll probably increase your actual exam score, since this will help
you master exactly the right material.

But suppose the professor uses the exact same exam for both the
sample exam and the actual final exam? Sure, the students would
be ecstatic, but that’s not the point. The point is: in this case, stu-
dents wouldn’t even have to learn the material. They could simply
memorize the answers! And after they all get their A’s back, they
might be tempted to think they’re really great at chemistry...but
they probably aren’t. They’re probably just really great at memo-
rizing and regurgitating.

Going from “the kinds of questions you may be asked” to “exactly
the questions you will be asked” makes all the difference. And if you
just studied the sample exam by memorization, and were then asked
(surprise!) to demonstrate your understanding of the material on a
new exam, you’d probably suck it up.

And so, the absolute iron-clad rule is this: any data that is given
to the classifier to learn from must not be used to test it.
The test data must be comprised of representative, but different,
examples. It’s the only way to assess how well the classifier gener-
alizes to new data that it hasn’t yet seen (which, of course, is the
whole point).

26.2. THREE KINDS OF EXAMPLES 265

Splitting the difference

Okay, so given that we have to split our precious labeled examples
into two sets, one for training and one for testing, how much do
we devote to each? It turns out that there are some sophisticated
techniques (beyond the scope of this book, but stay tuned for Vol-
ume Two) in which we can cleverly re-use portions of the data for
different purposes, and effectively make use of nearly all of it for
training.

But for our introductory approach here, we’ll just use a rule of
thumb: 70% for training data, and the other 30% for test
data.

As I mentioned earlier, we’ll normally shuffle the rows randomly
before dividing them into these two groups, just in case there’s any
pattern to the order in which they appear. For example, in our
NFL fan data set, it might turn out that the data came to us se-
quenced in a way such that people living on the east coast were at
the beginning of the DataFrame and those living out west were at
the end. Any arrangement like this would spell doom for our clas-
sification endeavor. For one thing, we wouldn’t be training on any
west coast people, and so our classifier would be oblivious to what
those data points looked like. For another thing, we’d only be using
west coasters to test our classifier, meaning that whatever accuracy
measure we computed is likely to be way off. Randomizing the
data is the sure way around this.

Here’s some code to create training and test sets. The .sample()
method of a DataFrame lets you choose some percentage of its rows
randomly. Its frac argument is a number between 0 and 1 and
specifies what fraction of the rows you want. Using the above rule
of thumb, let’s choose 70% of them for our training data:

training = fans.sample(frac=.7)
print(training)

266 CHAPTER 26. CLASSIFICATION: CONCEPTS

age hometown current_residence years_in_residence team
8 52 Arlington Fredericksburg 17 Ravens
15 63 New York Orlando 17 Giants
11 29 Fredericksburg Seattle 21 Seahawks
19 32 Warrenton Orlando 1 Ravens
2 47 Allegheny Chevy Chase 13 Ravens
7 31 Warrenton Charlottesville 6 Jets
0 29 Warrenton Warrenton 29 Ravens
5 32 Warrenton Winchester 11 Ravens
4 51 Orange County Dumfries 23 Ravens
9 60 Tyson's Corner Falls Church 4 Cowboys
10 17 Fredericksburg Fredericksburg 17 Ravens
1 39 Lubbock Arlington 2 Cowboys
13 35 Mechanicsville Orlando 8 Ravens
6 39 Dumfries Miami 5 Ravens

Notice that the numeric index values (far left) are in no particular
order, since that’s the point of taking a random sample. Also notice
that there are only 14 rows in this DataFrame instead of the full 20
that were in fans.

Now, we want our test set. The trick here is to say: “give me all
the rows of fans that were not selected for the training set.” By
building a query with the squiggle operator (“~”, meaning “not”)
in conjunction with the “.isin()” method, we can create a new
DataFrame called “test” that has exactly these rows:

test = fans[~fans.index.isin(training.index)]
print(test)

age hometown current_residence years_in_residence team
3 31 Littleton Littleton 3 Broncos
12 37 Richmond Richmond 37 Ravens
14 19 New York New York 19 Giants
16 42 Alexandria Manassas 10 Ravens
17 22 Allegheny Harrisburg 1 Steelers
18 38 Mechanicsville Fredericksburg 6 Ravens

That code says, in English: “create a new variable test that con-
tains only those rows of fans whose index is not present in any
of the training DataFrame’s indices.” As you can verify through
visual inspection, the result does have exactly the 6 rows that were
missing from training.

26.3. “THE PRIOR” 267

26.3 “The prior”

One more piece of lingo before we dive into a particular classification
technique next chapter. And that’s known as “the prior” of a data
set.

The term comes from something calledBayesian reasoning, which
is a whole subject (and a super cool one!) in its own right. All you
need to know here is the concept of two different quantities: the
prior, and the posterior.

In common usage, the word “prior” means “beforehand,” and so it
does here: the prior is your best judgment about what the target
value of a new example might be before you actually look at the fea-
ture values in that example. “Posterior,” on the other hand, means
“afterwards,” and means your best judgment about the target value
after duly taking into consideration all the feature values.

For example, you may have noticed that in my made-up data set,
above, I had a lot of Ravens fans. This is because I live in the
D.C. area, and happen to know a lot of Ravens fans. Out of my 20
labeled examples, a whopping twelve of them, in fact, had Ravens
as their value in the team column.

Thus, consider the following question. Suppose you knew noth-
ing about a person except that they were one of Stephen’s friends.
Which NFL team do you think they’d support? Assuming this
data set is representative of Stephen’s friends, you’d say: “I’d pre-
dict they’d be a Ravens fan, and I’d estimate that I’d have about a
60% chance of being right (1220).” This is the prior. You’re not tak-
ing into account anything about their age, where they were born,
etc.; in fact, you weren’t even told those things. Instead, you’re
just “using the prior” and treating everyone the same.

It would be a different story if I told you that this person was born
in New York City. Then you might squint your eyes at my data set
and realize that there are only two New Yorkers in it, and neither
one is a Ravens fan: they’re both Giants fans! Now you might
very well move away from your prior assumption. “Sure, most of
Stephen’s friends are Ravens fans, so ‘Ravens’ is a reasonable guess,

268 CHAPTER 26. CLASSIFICATION: CONCEPTS

but now that you’ve told me they’re from NY, that very well might
change my mind. Now, my guess is ‘Giants’.”

I keep saying “might” and “may” because different kinds of classifiers
work in different ways. Some of them may choose to take advantage
of some features but not others; some may just stick with the prior
in certain situations. The notion of “the prior” is mainly useful
as a baseline for comparison: it’s the best you can do given no
other possibly correlating information. The name of the game in
classification, of course, is to intelligently use that other information
to make more informed guesses, and to beat the prior. One of many
ways to approach this is the decision tree classification algorithm,
which we’ll look at in detail next.

Chapter 27

Decision trees for classification
(1 of 2)

So far our classification picture has been very general. We haven’t
said anything about how our classifier might actually work ; we’ve
just said that given values for each of the features, it will render a
prediction about what the label will be.

In chapters 27 and 28, we’ll study one particular algorithm for clas-
sification in machine learning: the decision tree algorithm. Not
only does it make a good introductory technique because of its in-
tuitive appeal, and not only can it classify pretty well in its own
right, but it also serves as the basis for a more sophisticated, state-
of-the-art classification method called “random forest” which we’ll
explore in Volume Two of this series.

27.1 A working example

Here’s a (fictitious) domain problem that we’ll use to demonstrate
the principles in this chapter and the next. Say we own a videogame
business, and we want to send full-color product catalogs to unsus-
pecting college students, so that they will buy our games and keep
us in business (while meanwhile failing out of school due to playing
games all the time).

Now full-color catalogs are expensive to print and ship, so we want

269

270 CHAPTER 27. DECISION TREES (1 OF 2)

to be smart about this. We definitely don’t want to send a bunch
of catalogs to students who aren’t likely buyers; that would run our
business into the ground. Instead, we’d like to identify the subset
of students who probably gamers, and send catalogs to only those
students.

Suppose that through nefarious means, we have acquired the fol-
lowing data set:

Major Age Gender VG
0 PSYC 22 F No
1 MATH 20 F No
2 PSYC 19 F No
3 CPSC 20 M Yes
4 MATH 18 M Yes
5 CPSC 20 F No
6 CPSC 19 O No
7 CPSC 17 M Yes
8 PSYC 18 F No
9 CPSC 20 F No
10 MATH 18 F No
11 CPSC 22 F Yes
12 MATH 21 M No
13 CPSC 23 M Yes
14 PSYC 17 M Yes
15 CPSC 18 F No
16 PSYC 19 F Yes

Each row represents one college student, with three features. The
first is their major – PSYC (Psychology), MATH (Mathematics), or
CPSC (Computer Science). (For simplicity, we’ll say these are the
only three possibilities, since your author happens to like them the
best.) The second is their age (numeric), and the third is their gen-
der: male, female, or other. The last column is our target: whether
or not this student is a videogamer. Glance over this DataFrame for
a moment.

27.1. A WORKING EXAMPLE 271

Eyeing the prior

As you remember from section 26.3, before we even think about
features, we might take a minute to just look at the target variable
itself. We ask ourselves “given no other information about a student,
what would be our gut feel about their videogame status?” Our pal
the .value_counts() method is perfect to compute this:

print(students.VG.value_counts())

N 10
Y 7
Name: VG, dtype: int64

So if we’re smart, we’d guess “no” for such mysterious persons, but
we could only expect to be right about 10

17

ths, or 59%, of the time.
Not great, although better than a coin flip.

Sticking with categorical features

Now it turns out that decision trees work best with all categorical
features, not a mix of categorical and numeric. So for now, we’re
going to simply classify each of our students into three buckets:
“young” (18 or younger), “middle” (19-21), and “old” (22+).1 For
the moment, don’t ask why we chose three age categories instead
of two or four, and don’t ask why we chose those particular split
points. We just did. More on that later.

Our training data now looks like this:

1 Believe it or not, a time will come in your life when 22 years of age does
not remotely seem “old.” For undergrads, though, I can see why 22 would seem
on the grey side, the Taylor Swift song notwithstanding.

272 CHAPTER 27. DECISION TREES (1 OF 2)

Major Age Gender VG
0 PSYC old F No
1 MATH middle F No
2 PSYC middle F No
3 CPSC middle M Yes
4 MATH young M Yes
5 CPSC middle F No
6 CPSC middle O No
7 CPSC young M Yes
8 PSYC young F No
9 CPSC middle F No
10 MATH young F No
11 CPSC old F Yes
12 MATH middle M No
13 CPSC old M Yes
14 PSYC young M Yes
15 CPSC young F No
16 PSYC middle F Yes

and we’re now officially ready to consider decision trees.

27.2 Decision Trees

First, let’s get our head around what a decision tree is. Our inau-
gural example is shown in Figure 27.1. The first thing you’ll notice
is that it has a branching structure that branches...down. I’m not
sure why Data Scientists draw trees growing down while the rest
of the world (including trees themselves: look outside if you don’t
believe me) has them growing up, but this is the convention so we’ll
just deal with it. To make it even more comical, the oval at the top
of the tree is called the root of the tree. Really.

Continuing full bore with the botany analogy, the lines connecting
the various shapes are, as you might suspect, called branches, and
the darker rectangles are called leaves. One non-botanic bit of
lingo is the name for the other ovals: they’re called nodes.

27.2. DECISION TREES 273

Figure 27.1: A decision tree (not a particularly good one, as it’ll turn out)
for the videogame data set.

Classifying with a decision tree

Okay. Now what does a decision tree “mean?” Geekily-put, it’s
the pictorial codification of an algorithm for classification. Not so
geekily, it’s a map that tells your classifier what rules to follow as
it forms its prediction for an example data point.

You simply start at the root, considering feature values at each
node, and following the matching branch down the tree. When you
reach a leaf, the prediction you give is written on the leaf node. It’s
that simple.

R First example: suppose we have a 24-year-old male Psychol-
ogy major. We want to know whether he’s likely to play
videogames. The decision tree in Figure 27.1 tells us to first
consider his Major, since that’s the root. Now because this
guy’s major is PSYC, we take the left branch and are immedi-
ately done: we’ve already reached a leaf. Our prediction for
this guy will be No, he probably doesn’t play videogames.

R Second example: we have an 18-year-old Math major who
doesn’t identify with either of the binary genders. Starting
again at the root, we now follow the middle branch for MATH.
Now, we look at the person’s Gender. Since it is O, we follow

274 CHAPTER 27. DECISION TREES (1 OF 2)

the right branch, and give a prediction of Yes: we predict
they do play videogames.

R Third example: we now have a 22-year-old female Computer
Science major. Do we think she would play videogames? The
root tells us to look at her Major first, which means we go
right; then we look at her Age, and since she’s positively an-
cient we go right again; and finally, her Gender tells us to
predict No, she’s probably not a gamer.

Most students find this process very straightforward. In the next
chapter, we’ll look at two key questions: first, how to turn a diagram
like Figure 27.1 into Python code? And second, what’s the best
way to make a good tree – i.e., one that makes as many successful
predictions as possible?

Chapter 28

Decision trees for classification
(2 of 2)

28.1 Decision Trees in Python

Our decision tree pictures from chapter 27 were quite illustrative,
but of course to actually automate something, we have to write
code rather than draw pictures. What would Figure 27.1 (p. 273)
look like in Python code? It’s actually pretty simple, although
there’s a lot of nested indentation. See if you can follow the flow in
Figure 28.1.

Here we’re defining a function called predict() that takes three
arguments, one for each feature value. The eye-popping set of
if/elif/else statements looks daunting at first, but when you
scrutinize it you’ll realize it perfectly reflects the structure of the
purple diagram. Each time we go down one level of the tree, we in-
dent one tab to the right. The body of the “if major == 'PSYC':”
statement is very short because the left-most branch of the tree (for
Psychology) is very simple. The “elif major == 'CPSC':” body,
by contrast, has lots of nested internal structure precisely because
the right-most branch of the tree (for Computer Science) is com-
plex. Etc.

275

276 CHAPTER 28. DECISION TREES (2 OF 2)

def predict(major, age, gender):
if major == 'PSYC':

return 'No'
elif major == 'MATH':

if gender == 'M':
return 'No'

elif gender == 'F' or gender == 'O':
return 'Yes'

elif major == 'CPSC':
if age == 'young':

return 'Yes'
elif age == 'middle':

return 'No'
elif age == 'old':

if gender == 'M' or gender == 'O':
return 'Yes'

elif gender == 'F':
return 'No'

Figure 28.1: A Python implementation of the decision tree in Figure 27.1.

If we call this function, it will give us exactly the same predictions
we calculated by hand on p. 273:

print(predict('PSYC','M','old'))
print(predict('MATH','O','young'))
print(predict('CPSC','F','old'))

No
Yes
No

28.2 Decision Tree induction

Okay, so now we understand what a decision tree is, and even how
to code one up in Python. The key question that remains is: how
do we figure out what tree to build?

There are lots of different choices, even for our little videogame
example. We could put any of the three features at the root. For

28.2. DECISION TREE INDUCTION 277

each branch from the root, we could put either of the other features,
or we could stop with a leaf. And the leaf could be a Yes leaf or
a No leaf. That’s a lot of “coulds.” How can we know what a good
tree might be – i.e., a tree that classifies new points more or less
correctly?

The answer, of course, is to take advantage of the training data.
It consists of labeled examples that are supposed to be our guide.
Using the training data to “learn” a good tree is called inducing a
decision tree. Let’s see how.

“Greedy” algorithms

Our decision tree induction algorithm is going to be a greedy one.
This means that instead of looking ahead and strategizing about
future nodes far down on the tree, we’re just going to grab the
immediate best-looking feature at every individual step and use
that. This won’t by any means guarantee us the best possible tree,
but it will be quick to learn one.

An illustration to help you understand greedy algorithms is to think
about a strategy game like chess. If you’ve ever played chess, you
know that the only way to play well is to think ahead several moves,
and anticipate your opponent’s probable responses. You can’t just
look at the board naïvely and say, “why look at that: if I move
my rook up four squares, I’ll capture my opponent’s pawn! Let’s
do it!” Without considering the broader implications of your move,
you’re likely to discover that as soon as you take her pawn, she
turns around and takes your rook because she’s lured you into a
trap.

A greedy algorithm for chess would do exactly that, however. It
would just grab whatever morsel was in front of it without consid-
ering the fuller consequences. That may seem really dumb – and it
is, for chess – but for certain other problems it turns out to be a
decent approach. And decision tree induction is one of those.

The reason we resort to a greedy algorithm is that for any real-
sized data set, the number of possible trees to consider is absolutely
overwhelming. There’s simply not enough time left in the universe

278 CHAPTER 28. DECISION TREES (2 OF 2)

to look at them all – and that’s not an exaggeration. So you have
to find some way of picking a tree without actually contemplating
every one, and it turns out that grabbing the immediately best-
looking feature at each level is a pretty good way to do that.

Choosing “the immediate best” feature

Now what does that mean, anyway: “choosing the immediate best
feature?” We’re going to define it as follows: the best feature to put
at any given node is the one which, if we did no further branching
from that node but instead put only leaves below it, would classify
the most training points correctly. Let’s see how this works for the
videogame example.

Our left-most feature in the DataFrame is Major, so let’s consider
that one first. Suppose we put Major at the root of the tree, and
then made each of its branches lead to leaves. What value should
we predict for each of the majors? Well, we can answer that with
another clever use of .value_counts(), this time conjoining it with
a call to .groupby(). Check out this primo line of code:

students.groupby('Major').VG.value_counts()

Stare hard at that code. You’ll realize that all these pieces are
things you already know: we’re just combining them in new ways.
That line of code says “take the entire students DataFrame, but
treat each of the majors as a separate group. And what should we
do with each group? Well, we count up the values of the VG column
for the rows in that group.” The result is as follows:

Major VG
PSYC No 3

Yes 2
MATH No 3

Yes 1
CPSC No 4

Yes 4
Name: VG, dtype: int64

28.2. DECISION TREE INDUCTION 279

We can answer “how many would we get right?” by reading right off
that chart. For the PSYCmajors, there are two who play videogames
and three who do not. Clearly, then, if we presented a Psychology
major to this decision tree, it ought to predict ’No’, and that pre-
diction would be correct for 3 out of the 5 Psychology majors on
record. For the MATH majors, we would again predict ’No’, and we’d
be correct 3 out of 4 times. Finally, for the CPSC majors, we have
4 Yeses and 4 Nos, so that’s not much help. We essentially have
to pick randomly since the training data doesn’t guide us to one
answer or the other. Let’s choose ‘Yes’ for our Computer Science
answer, just so it’s different than the others. The best one-level
decision tree that would result from putting Major at the top is
therefore depicted in Figure 28.2. It gets ten out of the seven-
teen training points correct (59%). Your reaction is probably “Big
whoop – we got that good a score just using the prior, and ignoring
all the features!” Truth. Don’t lose hope, though: Major was only
one of our three choices.

Figure 28.2: A one-level decision tree if we put the Major feature at the
root – it would classify ten of the seventeen training points correctly.

Let’s repeat this analysis for the other two features and see if either
one fares any better. Here’s the query for Age:

students.groupby('Age').VG.value_counts()

This yields:

280 CHAPTER 28. DECISION TREES (2 OF 2)

Age VG
middle No 6

Yes 2
old Yes 2

No 1
young No 3

Yes 3
Name: VG, dtype: int64

Making the sensible predictions at the leaves based on these values
gives the tree in Figure 28.3. It gets eleven points right (65%) – a
bit of an improvement.

Figure 28.3: A one-level decision tree if we chose the Age feature for the
root – it would classify eleven of the seventeen training points correctly.

Finally, we could put Gender at the root. Here’s the query for it:

students.groupby('Gender').VG.value_counts()

Gender VG
F No 8

Yes 2
M Yes 5

No 1
O No 1
Name: VG, dtype: int64

Paydirt! Splitting on the Gender feature first, as shown in Fig-
ure 28.4, gets us a whopping fourteen points correct, or over 82%.

28.2. DECISION TREE INDUCTION 281

This is clearly the winner of the three. And since we’re being greedy
and not bothering to look further downstream anyway, we hereby
elect to put Gender at the root of our tree.

Figure 28.4: A one-level decision tree if we chose the Gender feature for the
root. It would classify fourteen of the seventeen training points correctly –
easily the best of the three choices.

It’s worth taking a moment to look at those .value_counts() out-
puts and see if you can develop some intuition about why Gender
worked so much better at the root than the other two features
did. The reason is that for this data set, Gender split the data into
groups that were more homogeneous than the other splits gave.
“Homogeneous” here means that each group was more “pure,” or
put another way, more lopsided towards one of the labels. Gender
gave us a 5-to-1 lopsided ratio on the M branch, and an even more
lopsided 2-to-8 ratio on the F branch. Intuitively, this means that
Gender really is correlated with videogame use, and this shows up
in purer splits. Contrast this with the situation when we split on
Major first, and we ended up with a yucky 4-to-4 ratio on the CPSC
branch. An even split is the worst of all possible worlds: here, it
means that learning someone’s a Computer Science major doesn’t
tell you jack about their videogame use. That in turn means it’s
pretty useless to split on.

Lather, rinse, repeat

So far, we’ve done all that work just to figure out which feature
to put at the root of our tree. Now, we progress down each of the
branches and do the exact same thing: figure out what to put at

282 CHAPTER 28. DECISION TREES (2 OF 2)

each branch. We’ll continue on and on like this for the entire tree.
It’s turtles all the way down.

Let’s consider the left branch of Figure 28.4. What do we do with
males? There are now only two remaining features to split on. (It
wouldn’t make sense to split on Gender again, since the only people
who will reach the left branch are males anyway: there’d be nothing
to split on.)

Thus we could put either Major or Age at that left branch. To figure
out which one is better, we’ll do the same thing we did before, only
with one slight change: now, we need to consider only males in our
analysis.

We augment our primo line of code from above with a query at the
beginning, so that our counts include only males:

students[students.Gender=="M"].groupby('Major').VG.value_counts()

Major VG
CPSC Yes 3
MATH No 1

Yes 1
PSYC Yes 1
Name: VG, dtype: int64

Wow, cool: the CPSC and PSYC folks are perfectly homogeneous now.
If we end up deciding to split on Major here, we can put permanent
dark purple squares for each of those majors simply declaring “Yes.”
In all, splitting here gives us 5 out of 6 correct. The tree-in-progress
we’d end up with is in Figure 28.5.

Our other choice, of course, is to split on Age instead:

students[students.Gender=="M"].groupby('Age').VG.value_counts()

28.2. DECISION TREE INDUCTION 283

Figure 28.5: The tree-in-progress if we choose to split on Major in the male
branch.

Age VG
middle No 1

Yes 1
old Yes 1
young Yes 3
Name: VG, dtype: int64

Again, 5 out of 6 correct. Here, middle-aged students are the only
heterogeneous group; the old folks and young-uns are clean splits.
With this choice, our tree would appear as in Figure 28.6.

Figure 28.6: On the other hand, the tree-in-progress if we choose to split
on Age in the male branch instead.

So at this point, since splitting on either feature and then stopping
would give us exactly 5 out of 6 points correct, we just flip a coin. I

284 CHAPTER 28. DECISION TREES (2 OF 2)

just flipped one, and it came out tails (for Age) – hope that’s okay
with you.

Finishing up the left branch

The two “Yes” leaves in Figure 28.6 are now set in stone, since every
single young male in our training set was indeed a videogamer, as
was every old male. Now we just have to deal with the middle
branch.

Only one feature now remains to split on – Major – so we’ll do that,
and produce the result in Figure 28.7. There’s exactly one middle-
aged male MATH major in the original DataFrame (line 12, p. 272),
and he’s labeled “No,” so we’ll guess “No” in the MATH branch. Sim-
ilarly, we have one data point to guide us for CPSC majors (line
3), so we’ll predict “Yes” in this case. The PSYC branch presents
a conundrum, though: our data set doesn’t have any middle-aged
male Psychology majors, so how do we know what to guess in this
case?

Figure 28.7: Going one level further down after splitting on Age for males.
We have data for middle-aged CPSC and MATH males...but what to do with
middle-aged PSYC males?

The best way to handle this is to fall back to a more general case
where you do have examples. It’s true that we have no training

28.2. DECISION TREE INDUCTION 285

points for middle-aged male Psychology majors, but we do have
points for middle-aged males-in-general, and we discovered that 5
out of 6 of them were gamers. So it makes sense to default to “Yes”
in the PSYC branch of this part of the tree, even though we don’t
have any data points exactly like that. So that’s what we’ll do. The
finished left branch is depicted in Figure 28.8.

Figure 28.8: The decision tree we’re in the process of inducing, with the
left branch entirely completed.

Finishing up the rest of the tree

The rest of the process is just the same stuff done over and over.1

At each branch of the tree, we take the subset of the training points
that remain (i.e., the training points that match the path from the
root thus far, and are therefore applicable), and decide what to
branch on next. When we get to a completely homogeneous group,
we stop and put a leaf there. The end result of all these efforts is

1If you’re wondering whether there’s a way to automate this, the answer
is a resounding yes! There are many packages in Python and other lan-
guages which will automatically build a decision tree from a training set; the
DecisionTreeClassifier from the scikit-learn package is one of them. This
exercise of learning how to build a decision tree manually is so you can un-
derstand the concepts of what’s going on under the hood – kind of like you
learn how to add numbers in grade school even though you’ll normally use a
calculator later on in life.

286 CHAPTER 28. DECISION TREES (2 OF 2)

the final decision tree for the videogame data set, in Figure 28.9,
and its Python equivalent in Figure 28.10.

One interesting aspect of our final tree is the female→PSYC→middle-
aged branch. You’ll see that this leaf is labeled “Yes(?)” in the
diagram. Why the question mark? Because this is the one case
where we have a contradiction in our training data. Check out
lines 2 and 16 back on p. 272. They each reflect a middle-aged
female Psychology major, but with different labels: the first one is
not a videogame player, but the second one is.

I always thought the term “contradiction” was amusing here. Two
similar people don’t have exactly the same hobbies – so what? Is
that really so surprising? Do all middle-aged female Psychology
majors have to be identical?

Of course not. But you can also see things from the decision tree’s
point of view. The only things it knows about people are those
three attributes, and so as far as the decision tree is concerned,
the people on lines 2 and 16 really are indistinguishable. When
contradictions occur, we have no choice but to fall back on some
sort of majority-rules strategy: if out of seven otherwise-identical
people, two play videogames and five do not, we’d predict “No”
in that branch. In the present case, we can’t even do that much,
because we have exactly one of each. So I’ll just flip a coin again.
(*flip*) It came up heads, so we’ll go with “Yes.”

Notice that in this situation, the resulting tree will actually misclas-
sify one or more training points. If we called our function in Fig-
ure 28.10 and passed it our person from line 2 ('PSYC', 'middle',
'F'), it would return "Yes" even though line 2 is not a gamer. Fur-
thermore, contradictions are the only situation in which this will
ever happen; if the data is contradiction-free, then every training
point will be classified correctly by the decision tree.

Paradoxically, it turns out that’s not necessarily a good thing, as
we’ll discover in Volume Two of this series. For now, though, we’ll
simply declare victory.

28.2. DECISION TREE INDUCTION 287

Figure 28.9: The final decision tree for the videogame data set.

def predict(major, age, gender):
if gender == 'M':

if age == 'young':
return 'Yes'

elif age == 'middle':
if major == 'PSYC' or major == 'CPSC':

return 'Yes'
elif major == 'MATH':

return 'No'
elif age == 'old':

return 'Yes'
elif gender == 'F':

if major == 'MATH':
return 'No'

elif major == 'CPSC':
if age == 'young' or age == 'middle':

return 'No'
elif age == 'old':

return 'Yes'
elif major == 'PSYC':

if age == 'young' or age == 'old':
return 'No'

elif age == 'middle':
return 'Yes' # Here's our "contradiction"

elif gender == 'O':
return 'No'

Figure 28.10: The final decision tree for the videogame data set, as a
Python function.

Chapter 29

Evaluating a classifier

Once we’ve built a classifier – whether it’s a decision tree or any
other kind – the next step is to evaluate it to see how well it per-
forms. This is sometimes called the classifier’s performance. It
will determine whether we deem it accurate enough to set it loose
in the field, and if so, how accurate we can expect its predictions
to be.

At the risk of repeating myself (recall my stern lecture from sec-
tion 26.2) you must evaluate your classifier by testing it on data that
was not used to train it. On p. 265 we learned how to randomly
divide a data set into separate training and test sets.

Suppose we’ve done that. Suppose the students DataFrame from
chapters 27 and 28 was the result of randomly choosing 70% of
the labeled examples from an original data set, and that we have
preserved the remaining 30% of the rows in a DataFrame called
students_test, which contains:

289

290 CHAPTER 29. EVALUATING A CLASSIFIER

Major Age Gender VG
0 CPSC young F No
1 CPSC old O No
2 MATH old F No
3 CPSC middle M No
4 PSYC middle F Yes
5 PSYC young F No
6 MATH old M Yes
7 CPSC middle M Yes

Our question is: “how well does our classifier do on this test data?”

29.1 What “doing well” means

The most common (and simplest) way to measure a classifier’s per-
formance is to simply count how many of the test points it correctly
classifies, and divide by the total number of test points. This gives
us the classification accuracy as a fraction between 0 and 1 (or,
if we want to multiply by 100, a “percentage accuracy” from 0% to
100%.) It’s possible to do this because, as you’ll remember, our test
data is comprised of labeled examples, just like our training data is.
Therefore, we know the “right answer” for each test point, and we
can simply compare it to our classifier’s prediction.

Even though this is the most common approach, it’s worth taking a
moment to consider alternatives. The key assumption of this accu-
racy measure is that all kinds of prediction errors are equal. In the
videogame case, we’re saying that mistakenly labeling a videogamer
as a non-videogamer is “just as bad” as mistakenly labeling a non-
videogamer as a videogamer. And that might be just the right thing
for our gaming company to do.

But consider other settings. Suppose that our classifier’s inputs are
features from an MRI image, and our prediction is “cancer” or “no
cancer.” Now, it’s a much different story. Mistakenly predicting
that a certain patient has cancer when they actually don’t might
throw a needless scare into them. That’s bad. But it’s far worse

29.2. CALCULATING ACCURACY IN PYTHON 291

in the other direction: mistakenly giving a clean bill of health to a
patient who actually has early stage cancer risks losing a life. In
cases like this, we would need to penalize our classifier more harshly
for false negatives than for false positives.

It’s also a different story when the labels aren’t equally represented.
Recall the NFL fan prediction problem from Figure 26.1 (p. 262).
Consider if we performed fan prediction in a city like Dallas, which
is comprised of (say) 99% Cowboys fans and only 1% Ravens fans.
If we were to penalize a classifier equally for mistaken-Cowboy-
predictions and mistaken-Ravens-predictions, a one-line classifier
could earn a pretty good score:

def predict(age, hometown, current_residence, yrs_in_residence):
return "Cowboys"

It’s not even worth trying hard to ferret out the few Ravens fans if
we’re going to be docked a full point every time we dare to predict
one. They’re just too rare. The only way to get a classifier to
be bold and try to identify the tiny population of Ravens fans is to
penalize it more heavily for missing them than for falsely identifying
them.

Anyway, for the rest of this chapter, we’ll use the vanilla “count all
prediction mistakes equally” approach, but it’s worth remembering
that this doesn’t make sense in all situations.

29.2 Calculating accuracy in Python

Calculating your classifier’s accuracy is actually a snap. Once your
classifier’s code is in a function, you just need a loop.

Return to the videogame example from last chapter, and the deci-
sion tree classifier we wrote on p. 287. We’ll use a counter variable,
initialized to zero, that will keep track of our number of correct
predictions. We’ll then loop through each row of the test set, feed-
ing that row’s features to the classifier function. If the return value

292 CHAPTER 29. EVALUATING A CLASSIFIER

from the classifier matches the value of that row’s target, ka-ching!
We increment our counter to increase our score. If it doesn’t, we
don’t. At the end, we divide by the number of test points to get
our percentage. Simple!

count = 0
for row in students_test.itertuples():

if predict(row.Major, row.Age, row.Gender) == row.VG:
count += 1

accuracy = count / len(students_test) * 100
print("Our accuracy on the test set was {}%.".format(accuracy,

count, len(students_test)))

Our accuracy on the test set was 87.5%.

If we want more detail, we could print a message for each prediction,
and flag the incorrect ones for easy identification:

count = 0
for row in students_test.itertuples():

if predict(row.Major, row.Age, row.Gender) == row.VG:
print(" Predicted {}/{}/{} right!".format(row.Major,

row.Age, row.Gender))
count += 1

else:
print("X Predicted {}/{}/{} wrong. :(".format(row.Major,

row.Age, row.Gender))

accuracy = count / len(students_test) * 100
print("Our accuracy on the test set was {}% ({}/{}).".format(

accuracy, count, len(students_test)))

Predicted CPSC/young/F right!
Predicted CPSC/old/O right!
Predicted MATH/old/F right!

X Predicted CPSC/middle/M wrong. :(
Predicted PSYC/middle/F right!
Predicted PSYC/young/F right!
Predicted MATH/old/M right!
Predicted CPSC/middle/M right!

Our accuracy on the test set was 87.5% (7/8).

29.2. CALCULATING ACCURACY IN PYTHON 293

Not too shabby. As you can see, the only test point we missed
was the male middle-aged CPSC major, which our classifier figured
would be a videogamer. Live and learn.

The data size here is laughably small so that I can fit everything on
the page. But it’s worth considering these three quantities anyway:

Classifier’s performance on training set 94.1% (16/17)

Classifier’s performance on test set 82.5% (7/8)

Just using the prior on test set 62.5% (5/8)

These three quantities will nearly always be in this order from top
to bottom. When we test our classifier on the very data it was
trained on, we get an inflated view of its accuracy – for decision
trees, recall, it will always be 100% less any contradictions. Testing
it on the data it has not yet seen gives the truer (more realistic)
picture. Finally, your classifier had better outperform just using the
prior (here, choosing “No” because the majority of training points
were “No”) or this whole thing is a pretty useless enterprise!

294 CHAPTER 29. EVALUATING A CLASSIFIER

Index

! (bang), 125
"" (quotes), 19
α (alpha), 102, 198
χ2 test, 204
→ (causality), 91
'' (ticks), 19
() (bananas), 20, 24, 31, 63,

105, 225
* (splat), 10
**, 31
+, 31, 34
+= (“plus-equals”), 34
-, 31
/, 31
<> (wakkas), 31, 125
== (double-equals), 126, 213
[] (boxies), 31, 63, 74, 85, 105,

109, 124, 133, 175, 187,
239

{} (curlies), 23, 31, 137
~ (squiggle), 129, 266
42 (Life, Universe, Everything),

87

absolute difference, 50
accuracy, classification, 290
acquisition, 3
add() function (Pandas), 115

adults, 187
aggregate data, 53, 229
Alex, 5
algorithmic thinking, 241
alpha (α), 102, 198
and (compound condition), 128,

188
angry, 258
ANOVA (ANalysis Of VAri-

ance), 208
any_zeros(), 240, 241
append() (NumPy), 83
apple, 13
arange() (NumPy), 66
arbitrary, 50
argument, 20, 225, 227
array, 53, 62, 136

associative, 54, 103
in NumPy, 61, 73
length, 73

array() (NumPy), 63, 250
association, 91, 98, 194, 202

spurious, 101
associative array, 103
atomic, 13, 15, 71, 229
attribute, 261
Avengers: Endgame, 15

295

296 INDEX

bananas (parentheses), 20, 24,
31, 63, 105, 225, 227

bang (“!”), 125
bang-equals (“!=”), 125
bank teller, 5
bar, 101
bar chart, 155, 157, 202
barbecue, 92
Bayesian reasoning, 267
bb_pts(), 236
Beavis, 75
“bell-curvy”, 153, 160, 164, 206
Betty Lou, 239
Biff, 239
bin (of a histogram), 159, 161,

163
bit (“binary digit”), 64, 68
bivariate, 165, 193
black hole, 167
bomb, 38
Boole, George, 231
boolean value, 231, 252
box plot, 165

grouped, 205
boxies (square brackets), 31,

63, 74, 85, 105, 109,
124, 133, 175, 187, 239

branch (of a decision tree), 272
branching, 211
Broadway shows, 164
Broncos, Denver, 82, 226
Buffy the Vampire Slayer, 117
by_player, 248

“calling” a function, 20, 38, 62,
82

“calling” a method (on a vari-
able), 22, 38, 62, 81

camel case, 70
cancer, 92
car engine, 224
cardinal rule (of if/else), 214,

240
cardinal sin (division by zero),

250
Carl’s Ice Cream, 37
case (upper and lower), 34
cash_on_hand, 211
catalog, 269
categorical variable, 44, 90, 145,

190, 201, 259, 271
causal, 89
causal diagram, 92
causality, 91
cause, 89
cell, 9

Code, 10
Markdown, 10
raw, 10
type dropdown, 10

“Cell” CoCalc menu, 10, 12
central tendency, 45, 147
Chandra, 5
chess, 277
chi2_contingency() (SciPy),

204
classification, 259, 261

accuracy, 290
classifier, 259, 261
clustering, 260
CoCalc, 10, 68
code, 16
code snippet, 10, 17
Colts, Baltimore, 227
column (of a table), 56, 170,

177, 243

INDEX 297

.columns (Pandas), 181
compound condition, 128, 188,

212
Computer Science, 270
concatenating

arrays, 83
strings, 34

condition (of a query), 124
condition (of an if statement),

212, 230
condition-controlled (loop), 135
conditional execution, 211
confirmation bias, 195
confounding factor, 92, 96
contains(), 131
contingency table, 202
contradiction (in a training set),

286, 293
control (for a variable), 96, 97
controlled experiment, 99
copying (Serieses), 117
copying (arrays), 79
correlation, 91, 194
correlation coefficient, 209
counter variable, 34, 65
counter-controlled (loop), 135
Cowboys, Dallas, 291
creativity, 224
CSV (comma-separated values

format), 107, 154, 169
cumulative total, 33
curlies (curly braces), 31, 137
cut point (quantile), 148

data, 4
data cleansing, 37
data mining, 256

data-generating process (DGP),
99

data-to-wisdom hierarchy, 2
DataFrame (Pandas), 169
davieses, 169
decile, 149
decimal point, 18
decision tree, 269, 272
decrement, 65
deductive reasoning, 256
deep, 103
def statement, 224
default value, 173
defensive, 258
del operator (Pandas), 111, 175
delete() (NumPy), 83
delimiter, 71
Democritus, 13
dependent, 91
dependent variable (d.v.), 89
derived column, 243
.describe()method (Pandas),

185
dict (dictionary), 103
dimension, 62, 106
directory

home, 69
directory (folder), 68
distribution, 164
div() function (Pandas), 115
donut_store, 19
“double bananas”, 23
“double boxies”, 178, 189
“double comma”, 171
double-equals (==), 126, 213
Dow Jones Industrial Average,

4
Dr., 217, 233

298 INDEX

.drop()method (Pandas), 175

.dropna() method (Pandas),
173

.dtype (NumPy/Pandas), 64,
71, 106

“e” (exponential) notation, 207
edit, 9
element, 53, 58, 73, 74, 109
elif, 215
else, 213
embarrassed, 258
“enough”, 196
environment, 13, 25

programming, 9
examples, labeled and unlabeled,

261
execute, 9
executing (code), 16
Exploratory Data Analysis (EDA),

145, 193
extension (filename), 69, 107,

154
external causation, 92
eyeballing it, 196

Facebook, 15
faves, 146
feature, 261
Filbert, 238, 239
file, 68

.csv, 107, 154, 169, 171
plain-text, 68

filename extension, 69, 107, 154
.fillna() method (Pandas),

173
filter, 124, 164
fish bubbles, 167

fixed-iteration (loop), 135
flip() (NumPy), 83
float, 18, 81, 252
folder (directory), 68
football, 159
football_score, 224
for loop, 135
Foreman, George, 170
fractional number, 15
frightened, 258
full_name(), 233
function, 20, 63, 223, 259

body, 225
header, 225

GDP, 4
generalizable truths, 5
generalizing (to new data), 264
George, 170
GIF file, 68
global warming, 89
gobbledy-gook, 4
golden rule, 215
gradebook, 239
gravity, 167
greedy (algorithm), 277
greenhouse gas, 89
greet(), 233
.groupby()method (Pandas),

189, 206, 247, 278
grouped_wc, 247
groupthink, 195

happy, 258
header row (of a .csv file), 107,

170
height, 194
heterogeneous, 53, 57

INDEX 299

hiccup, 89
high_cutoff, 237
histogram, 159
holistic thinking, 241
Holmes, Sherlock, 256
home directory, 69
homogeneous, 53, 56, 57, 64,

121

IDE, 9
.idxmax() (Pandas), 123
.idxmin() (Pandas), 123
if statement, 211, 230
if/elif/else statement, 215
if/else statement, 213, 231
.iloc syntax (Pandas), 112,

177
image file, 15, 68
IMDB, 260
importing (a package), 62, 103,

202
“in place”, 81, 83, 111, 119
increment, 34, 65
indentation, 137, 212, 218, 225,

241, 275
independent variable (i.v.), 89
.Index (capital I) syntax, 191
.index (little i) syntax, 112,

124, 125, 140, 181, 266
index (pl: indices), 54, 103, 123
indivisible, 13
inductive reasoning, 256, 277
inference, 256
information, 5
input

of a function, 225
to a classifier, 261

insert() (NumPy), 83

int, 16, 81
integer, 16
interest rate, 15, 18
interpretation, 4
interval variable, 48, 90
IQ, 101, 194
IQR (interquartile range), 150,

153, 166, 229
is_old_enough_to_vote(), 230
.items() (Pandas), 141
iterate, 136
iteration, 139, 140, 240
.itertuples() (Pandas), 191,

219

Jets, New York, 227
Jezebel, 239
Jupyter Notebooks, 9

Kasparov, Garry, 233
key-value pair, 54, 103, 123
kids, 188
old_andor_wise, 188
knowledge, 5

label, 261
labeled examples, 261
language, 9
language-general, 16
leaf (of a decision tree), 272
len(), 20, 73, 109, 131, 182
“likes”, 14
line of code, 16
lingo, 20
list, plain-ol’, 61, 64
lit, 19
loadtxt() (NumPy), 68
.loc syntax (Pandas), 177
loop, 34, 135, 191, 219, 249

300 INDEX

body, 137, 191, 212
header, 137, 191, 212

loop variable, 138, 141
low_cutoff, 237
.lower(), 35
.lstrip(), 35
lung cancer, 89

machine learning (ML), 256
main program, 227
mapping (a key to a value), 55
Markdown, 10
married, 217, 233
Marvel comics, 105, 130, 139
match (a query), 124, 187
matching bananas, 23
Mathematics, 270
matrix, 62
.max() (Pandas), 123
mean, 49, 51, 152, 164, 194
.mean() (Pandas), 152, 185
mean_no_outliers(), 237
meaning, 43
measure of central tendency,

45, 147
median, 46, 149, 166, 185, 189
Melvin, 239
memory, 25

picture, 26, 79
memory picture, 138
Merkel, Angela, 233
metadata, 170, 181
method, 22, 63
Microsoft, 68
“middlest” value, 46
.min() (Pandas), 123
minsplayed, 246
missing value, 114, 172

mode, 45, 147
modular, 223
mood, 258
movie rating, 15, 17
Mr./Mrs./Miss/Ms./Mx., 217,

233
mul() function (Pandas), 115
mutually exclusive, 215

Namath, Joe, 227
NaN (“not a number”), 114, 122,

172
NCAA, 159, 229
ndarray (NumPy), 61, 62, 73,

136
negative correlation, 210
nested if statements, 217, 275
node (of a decision tree), 272
nominal variable, 44, 145, 201
non-linear, 135, 211, 223
not (query condition), 129, 266
num_plays, 150, 162, 229
NumPy package, 61, 103

object (for loadtxt()), 71
objects (of a study), 89, 159,

172, 258
OBOE (off-by-one error), 67
observational study, 99
“of” (array/Series access), 133
off-by-one error, 67
“on”, 22, 38, 81, 83
operator, 31
or (compound condition), 128,

188
order, 44, 45, 47, 55, 57, 111
ordinal variable, 45
outlier, 167

INDEX 301

output, 10
of a classifier, 261
of a function, 38, 225

overloading, 73, 85

p-value, 197
package, 61–63, 103
Pandas package, 103
pass, 20
“passing” an argument, 20, 38,

82, 227
Patriots, New England, 82
Paul’s Bakery, 19
Pearson correlation coefficient,

209
pearsonr() (SciPy), 209
PEMDAS, 237
percentile, 149
performance (of a classifier),

289
Perry, Katy, 146
Ph.D., 217, 233
pinterest, 96
plain-text file, 68
.plot()method, 155, 157, 161,

165
“plus-equals” (+=), 34
pointer, 58, 72
population, 196
positive correlation, 210
posterior, 267
predict(), 275
prediction, 256, 259
print(), 22
print_harass_list(), 239
printing a variable, 22
“the prior”, 267
programming environment, 9

Psychology, 270

quantile, 148, 149, 159, 165
.quantile()method (Pandas),

148
quartile, 149, 186
query, 57, 124, 136, 164, 187,

266
quintile, 149
quiz_avg(), 238
quotation marks, 19

random forest, 269
randomization

of experimental subjects,
99

of training and test data,
265

ratio variable, 51, 90
Ravens, Baltimore, 55, 82, 291
read_csv() function (Pandas),

107, 154, 169, 170
real number, 15, 148
real world, 3
recoding, 245
reference, 58
regression, 259
relative difference, 50
render, 10
“returning” a value, 38, 73
return statement, 225, 231,

232
return value, 38, 82, 225, 231,

232
reusable, 224
reversing (an array), 83
revolution, 17, 18
rock ’n’ roll, 224

302 INDEX

root (of a decision tree), 272
round() function (NumPy), 237,

245
row (of a DataFrame), 177
row (of a table), 56, 170, 177
.rstrip(), 35
rule of thumb (for training/test

data), 265
“Run All”, 10, 12

s_perc, 250
salutation(), 232, 233
salutations, 217, 232
sample, 194, 196
.sample() (Pandas), 265
Santa’s Little Helper, 171, 175
scales of measure, 43, 90, 145,

201, 259
scatter plot, 208
scientific notation, 207
semantics, 43
Series (Pandas), 103, 109
.set_index() method (Pan-

das), 170, 244
SettingWithCopyWarning, 246
sex, 194
.shape (Pandas), 182
Sharapova, Maria, 233
shooting_perc(), 250
short and fat, 56
shuffle (DataFrame rows), 265
The Simpsons, 171, 187, 193
simulation, 6
single, 217, 233
slice, 76, 239
slot #1, 229
slot #2, 229
smoking, 89

smoosh, 167
“the snap”, 140
snippet, 10, 17
soccer, 69, 244
song file, 15, 68
.sort(), 81
np.sort() (NumPy), 82, 238
.sort_index()method (Pan-

das), 118, 157, 182
.sort_values()method (Pan-

das), 118, 156, 183
sorting (DataFrames), 182
sorting (Serieses), 118
sorting (arrays), 81, 82, 238
spacing, 47
“spaghetti code”, 224
Spiderman, 6
splat, 10
spurious association, 101
Spyder, 9
squiggle (tilde, or “~”), 129,

266
squinty eyes, 258
standard deviation, 153, 164,

186
starter, 251
statement, 16
statistical significance, 194
statistical test, 197
.std() method (Pandas), 153
Steelers, Pittsburgh, 82
stock market, 4
Stooges (The Three), 75
.str suffix (for Pandas queries),

131
str, 19, 81, 85
stratification, 96, 97
string, 19, 85

INDEX 303

length, 20
of digits, 19

.strip(), 35
sub() function (Pandas), 115
subset (of a data set), 189
.sum() method (Pandas), 185
summary statistics, 145, 185
Superbowl III, 227
“supervised” ML, 258
“sweet spot”, 162
Swift, Taylor, 146, 271
syntax, 43

t-test, 206
table, 56, 103, 169, 193
tacking on (concatenating) strings,

34
tackles-per-game, 247
tall and skinny, 56
target attribute, 258
temperature, 15
test data, 262
text, 15
Thanos, 140
thinking algorithmically vs. holis-

tically, 241
Thunberg, Greta, 233
tie-breaker, 183
.title(), 35
tkl_per_90, 247
training data, 258, 262, 277
transforming, 246
trimming (a string), 34
Trump, Donald, 196
ttest_ind() (SciPy), 207
turtle, 281
type(), 17–19, 63, 65, 66, 106

uncertainty, 6, 7
undefined, 55
underscore, 16
understanding, 123
uniqueness

of keys in assoc. array, 56,
110, 120

of values in DataFrame in-
dex, 170

univariate, 145, 154
unlabeled examples, 261
“unsupervised” ML, 258
.upper(), 35
US Women’s National Team,

69, 244

.value_counts()method (Pan-
das), 146, 157, 202, 271,
278

variable, 13, 21, 43, 89
aggregate, 43, 53
confounding, 92, 96
dependent, 89
independent, 89
name, 13, 14, 16
real number, 15
text, 15
type, 14, 17
value, 13, 16, 21
whole number, 14

variable-iteration (loop), 135
“vectorized” operation, 78, 245,

249
video file, 15
videogames, 269
votes, 14

304 INDEX

wakkas (angle brackets), 31,
125

walking on water, 7
Warren, Elizabeth, 196
Watson, Emma, 217
wheel, reinventing, 224
“where” (array/Series query),

133
while loop, 135
whitespace, 34
whole number, 14
wisdom, 6
WMD, 196
Word (Microsoft), 68
wrapping, 106
writing a function, 223

YouTube, 150, 162, 229

zero, starting at, 54, 85
zero point, 49
zeros() (NumPy), 65

	Contents
	Introduction
	A trip to Jupyter
	Three kinds of atomic data
	Memory pictures
	Calculations
	Scales of measure
	Three kinds of aggregate data
	Arrays in Python (1 of 2)
	Arrays in Python (2 of 2)
	Interpreting Data
	Assoc. arrays in Python (1 of 3)
	Assoc. arrays in Python (2 of 3)
	Assoc. arrays in Python (3 of 3)
	Loops
	EDA: univariate
	Tables in Python (1 of 3)
	Tables in Python (2 of 3)
	Tables in Python (3 of 3)
	EDA: bivariate (1 of 2)
	EDA: bivariate (2 of 2)
	Branching
	Functions (1 of 2)
	Functions (2 of 2)
	Recoding and transforming
	Machine Learning: concepts
	Classification: concepts
	Decision trees (1 of 2)
	Decision trees (2 of 2)
	Evaluating a classifier

